Isaac Scientific Publishing

Environmental Pollution and Protection

Land Use Regression Approach to Model NO2–Concentrations in a Swedish Medium-City

Download PDF (5583.1 KB) PP. 71 - 89 Pub. Date: September 1, 2018

DOI: 10.22606/epp.2018.33001


  • Mateus Habermann*
    Department of Architecture, Chalmers University of Technology, Gothenburg, Sweden
  • Monica Billger
    Department of Architecture, Chalmers University of Technology, Gothenburg, Sweden
  • Marie Haeger-Eugensson*
    Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden;COWI AB, Gothenburg, Sweden


In order to visualize the geographical distribution of air pollution concentration realistically, we applied the Land Use Regression (LUR) model in the urban area of Gothenburg, Sweden. The concentration of NO2 was obtained by 25 passive air samplers during 7-20 May, 2001. Explanatory variables were estimated by GIS in buffers ranging from 50 to 500 m-radii. Linear regression was calculated, and the most robust were attained to the multiple linear regression. Additionally, the LUR model was compared with a dispersion model. The final model explained 81.7% of the variance of NO2 concentration with presence of sum of traffic within 150 m and altitude as predictor variables. Mann-Whitney Test did not exhibit significant difference between yearly concentrations of NO2 measured by regulatory measurement sites and measurements from passive samplers, thus LUR model was extrapolated for later years and mapped. The extrapolation indicated more elevated levels of pollution for the years 2003, 2006 and 2010. The results highlight the contribution of traffic on air quality and suggest that LUR modelling may explain the variations of atmospheric pollution with good accuracy. In addition, the model puts focus on spatial and temporal variability needed to describe retrospective exposure to air pollution in studies that evaluate health effects.


Air polluti dioxide; exposure modeling; geographic information system; LUR model.


[1] Zou B, Wilson Jg, Zhan Fb, Zeng Y. Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit. 2009; 11:475-490. doi: 10.1039/b813889c

[2] Nuckols JR, Ward MH, Jarup l. Using geographic information systems for exposure assessment in Environmental Epidemiology studies. Environ Health Perspect. 2004; 112:1007-1015. doi: 10.1289/ehp.6738

[3] Zhu Y, Hinds WC, Kim S, Shen S, Sioutas C. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ. 2002; 36: 4323–4335. doi: 10.1016/S1352-2310(02)00354-0

[4] World Health Organization (WHO). WHO air quality guidelines global update 2005 – Report on a working group meeting. Bonn, Germany: 2006.

[5] Jerrett M, Arain MA, Kanaroglou P, Beckerman B, Crouse D, Gilbert NL, et al. A Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. J Toxicol Environ Health, 70 (2007):200-212. doi: 10.1080/15287390600883018

[6] Arain MA, Blair R, Finkelstein N, Brook JR, Sahsuvaroglu T, Beckerman B, Zhang L, Jerret M. The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos Environ. 2007; 41:3453-3464. doi: 10.1016/j.atmosenv.2006.11.063

[7] Jerret M, Finkelstein M. Geographies of risk in studies linking chronic air pollution exposure to health outcomes. J Toxicol Environ Health. 2005; 68:1207-1242. doi: 10.1080/15287390590936085

[8] M?lter A, Lindley S, de Vocht F, Simpson A, Agius R. Modelling air pollution for epidemiologic research--Part I: A novel approach combining land use regression and air dispersion. Sci Total Environ. 2010; 1; 408(23):5862-5869. doi: 10.1016/j.scitotenv.2010.08.027

[9] Rose N, Cowie C, Gillet R, Marks GB. Weighted road density: a simple way of assigning traffic-related air pollution exposure. Atmos Environ. 2009; 43:5009-5014. doi:10.1016/j.atmosenv.2009.06.049

[10] Borne K, Chen D, Miao J, Achberger C, Lindgren J, Hallquist M, et al. Data report on measurements of meteorological- and air pollution variables during the campaign G?TE-2001. Earth Sciences Centre, Gothenburg University. Gothenburg, 2005.

[11] Haeger-Eugensson (2010). On the increasing levels of NO2 in some cities: The role of primary emissions and shipping. Stockholm: IVL Swedish Environmental Research Institute. IVL report B- B1886. Available in Access in July/2017.

[12] Habermann M, Billger M, Haeger-Eugensson M. Land use regression as method to model air pollution. Previous results for Gothenburg/Sweden. Procedia Engineering. 2015; 115:21–28. doi: 10.1016/j.proeng.2015.07.350

[13] Sahsuvaroglu T, Arain A, Kanaroglou P, Finkelstein N, Newbold B. A land use regression model model for predicting ambient concentrations of nitrogen dioxide in Hamilton, Ontario. J Air Waste Manag Assoc. 2006; 56:1059-1069. doi: 10.1080/10473289.2006.10464542

[14] I?iguez C, Ballester F, Estarlich M, Llop S, Fernandez-Patier R, Aguirre-Alfaro A, Esplugues A. Estimation of personal NO2 exposure in a cohort of pregnant women. Science of the Total Environment. 2009; 407:6093-6099. doi: 10.1016/j.scitotenv.2009.08.006

[15] Chen L, Bai Z, Kong S, Han B, You Y, Ding X, Du S, Liu A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J Environ Sci. 2010; 22:1364–1373. doi: 10.1016/S1001-0742(09)60263-1

[16] Eeftens M, Beelen R, Hoogh K, Bellander T, Cesaroni G, Cirach M, et al. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PM coarse in 20 European Study Areas; Results of the ESCAPE Project. Environ Sci Technol. 2012, 46: 11195?11205. doi: 10.1021/es301948k

[17] Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe e The ESCAPE project. Atmos Environ; 72 (2013):10-23. doi:10.1016/j.atmosenv.2013.02.037

[18] Ross Z, English PB, Scalf R, Gunier R, Smorodinsky S, Wall S, et al. Nitrogen dioxide prediction in Southern California using land use regression modelling: potential for environmental health analyses. J Exp Sci Environ Epidemiol. 2006; 16:106–114. doi:10.1038/sj.jea.7500442

[19] Hoek, Beelen R, Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008; 42:7561-7578. doi:10.1016/j.atmosenv.2008.05.057

[20] Montagne D, Hoek G, Nieuwenhuijsen M, Lanki T, Pennanen A, Portella M, et al. Agreement of land use regression models with personal exposure measurements of particulate matter and nitrogen oxides air pollution. Environ Sci Technol. 2013; 47:8523-8531. doi: 10.1021/es400920a

[21] Liu C, Henderson BH, Wang D, Yang X, Peng ZR. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci Total Environ. 2016; 15; 565:607-15. doi: 10.1016/j.scitotenv.2016.03.189

[22] Li L, Wu J, Wilhelm M, Ritz B. Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California. Atmos Environ. 2012; 55:220-228. doi:10.1016/j.atmosenv.2012.03.035

[23] Johnson M, Isakov V, Touma JS, Mukerjee S, ?zkaynak H. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos Environ. 2010; 44:3660-3668. doi:10.1016/j.atmosenv.2010.06.041

[24] Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect. 2008; 116:680-686. doi:10.1289/ehp.10952