Isaac Scientific Publishing

Environmental Pollution and Protection

A Spatio-Temporal Distribution and Dynamics of Major-, Minor- and Trace- Elements in Two Temperate Urban Lacustrine Ecosystems of Srinagar, Kashmir

Download PDF (1775.6 KB) PP. 1 - 16 Pub. Date: June 24, 2019

DOI: 10.22606/epp.2019.41001

Author(s)

  • Umar Nazir Bhat*
    Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
  • Anisa Basheer Khan
    Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India

Abstract

Water bodies act as indicators of the extent of anthropogenic interference and pressure while evolving exhibitive fluxes in intrinsic homeostasis. The ecological assessment of standard biophysicochemical variables through space-time monitoring in the region of anthro-urban intensification identifies such ecosystem responses. Sampling, preservation, preparation and analysis follow typical procedures for all the representative testers. Statistical procedures for inference of results involve Mean, Standard Deviation, Range, Correlation, Regression, Analysis of Variance (ANOVA), Cluster Analysis and Principal Components Analysis (PCA). Temperature, pH, conductivity and ionic composition of the surface waters have p<0.01 and R2>0.5. Total P perimeter outdid critical eutrophic index (≤ 0.05 mgL-1) but nitrate N persisted underneath it (≤ 0.5 mgL-1) ordinarily. Elevated nutrient levels reflect multiple human origins and catchment interventions. Priority pollutants (As, Cd, Cr, Cu, Pb, Ni and Se) remained below chronic levels with exception of Fe and Zn exceeding maximum permissible limits for irrigation purpose of the water. Major elements in surface sediments are Si> Ca> Mg> K> Na> P> S> Cl besides the micro and trace ones follow as Fe> Al> Zn> Mn> Cu> Cr> Ni> Co> As> Sn> Pb> Cd. Sediments correspond to calcite catchment character to conform their sink-selves. The peak biomass values as gm-2 are 880.2 in case of Myriophyllum aquaticum, 678.4 in Nelumbo nucifera, 182.4 in Ceratophyllum demersum and 45 in Salvinia natans. The upgraded biomass configuration coincides with supplementary bioconcentration. C/N <10 implies low decomposition rates and autochthonous origin of organic matter. A semidrainage type of flushing hydrology ensures low basin holding time for self-reclaimed nutrient balance. Sediment dredging is beneficial for internal nutrient deloading only after external inputs are curtailed. Biological scavenging and biogenic calcification together lower the bioavailability of nutrients and toxics. Hence, the systemic insitu pliability can prevail till exsitu lacustrine management fortifies euoecism to evade detrimental dysoecism.

Keywords

Sediment chemistry, productivity, organic matter, trophic status, trace-elements

References

[1] Wetzel, R. G. (2001). Land–water interfaces: larger plants. Limnology, 3rd Edn., Academic Press, San Diego.

[2] Søndergaard, M., Johansson, L. S., Lauridsen, T. L., JØRGENSEN, T. B., Liboriussen, L., & Jeppesen, E. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 55(4), 893- 908.

[3] Karanlik, S., Agca, N., & Mehmet, Y. (2011). Spatial distribution of heavy metals content in soils of Amik Plain (Hatay, Turkey). Environmental Monitoring andAssessment,173, 181-191.

[4] Zhang, F., Yan, X., Zeng, C., Zhang, M., Shrestha, S., Devkota, L.P., & Yao, T. (2012). Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. International Journal of Environmental Research and PublicHealth, 9, 1715-1731.

[5] EEA. (2012). European Waters – Assessment of Status and Pressures. European Environment Agency, Copenhagen.

[6] UNEP. (2007). Global Environment Outlook 4 (GEO-4): environment for development. United Nations Environment Programme, Nairobi, Kenya.

[7] Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., & Davies, P.M. (2010). Global threats to human water security and river biodiversity. Nature. 467, 555–561.

[8] MEA, Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Current State and Trends. Island Press, Washington, DC.

[9] ANZECC/ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, 1-103.

[10] Batley, G. E. (2000). Implications of the new ANZECC/ARMCANZ water quality guidelines for mining companies, In. Grundon, NJ and Bell, LC. In Proceedings of the Fourth Australian Workshop on Acid Mine Drainage, 221-229.

[11] Wright, J. F., Sutcliffe, D. W., &Furse, M. T. (2000). Assessing the biological quality of fresh waters: RIVPACS and other techniques. In Assessing the biological quality of fresh waters: RIVPACS and other techniques. Freshwater Biological Association.

[12] Bunn, S. E., & Davies, P. M. (2000). Biological processes in running waters and their implications for the assessment of ecological integrity. In Assessing the Ecological Integrity of Running Waters (pp. 61-70). Springer Netherlands.

[13] Gupta, A., Ronghang, M., Kumar, P., Mehrotra, I., Kumar, S., Grischek, T., &Knoeller, K. (2015). Nitrate contamination of riverbank filtrate at Srinagar, Uttarakhand, India: A case of geogenic mineralization. Journal of Hydrology, 531, 626-637.

[14] Allan, I., Vrana, B., Greenwood, R., Mills, G., Knutsson, J., Holmberg, A., &Guigues, N. (2006). Strategic monitoring for the European Water Framework Directive. TrAC, Trends analytical chemistry, 25(7), 704–715.

[15] Bierman, P., Lewis, M., Ostendorf, B., & Tanner, J. (2009). A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators, 11 (1), 103–114.

[16] Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., &Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11 (2), 328–336.

[17] APHA,. (2005). APHA, AWWA, & WEF. Standard methods for the examination of water and wastewater, 21stedn., Washington, DC.

[18] Mazej, Z., & Germ, M. (2009). Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74(5), 642-647.

[19] Matusiewicz, H. (2003). Wet digestion methods (Vol. 41). Elsevier: Amsterdam, Netherlands, 193-233.

[20] Morford, J.L., Emerson, S.R., Breckel, E.J., & Kim, S.H. (2005). Diagenesis of oxyanions (V, U, Re, and Mo) in porewaters and sediments from a continental margin. GeochimicaetcosmochimicaActa. 69, 5021 -5032.

[21] Parker, J. L., & Bloom, N. S. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of the Total Environment, 337(1), 253-263.

[22] U. S. Environmental Protection Agency. (1994). Method 200.7 : Determination of Metals and Trace Elements in Water and Wastes By Inductively Coupled Plasma – Atomic Emission Spectrometry, Revision 4.4, EMMC.

[23] Gupta, P.K. (2004). Soil, Plant, Water and Fertilizer Analysis. Agro Botanica, Vyas Nagar, Bikaner, India.

[24] Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas (ICARDA). Aleppo, Syria.

[25] Saison, C., Schwartz, C., & Morel, J. L. (2004). Hyperaccumulation of metals by Thlaspicaerulescens as affected by root development and Cd–Zn/Ca–Mg interactions. International Journal of phytoremediation, 6(1), 49-61.

[26] Boyd, C. E., Tucker, C. S., &Somridhivej, B. (2016). Alkalinity and hardness: critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6-41.

[27] Marberly, S.C. (1996). Diel, episodic and seasonal changes in pH and concentration of inorganic carbon in a productive lake. Freshwater Biology. 35, 579-598.

[28] Srebotnjak, T., Carr, G., de Sherbinin, A., &Rickwood, C. (2012). A global Water Quality Index and hot-deck imputation of missing data. Ecological Indicators, 17, 108-119.

[29] Olsen, S., Jeppesen, E., Moss, B., Özkan, K., Beklioglu, M., Feuchtmayr, H., & Söndergaard, M. (2014). Factors influencing nitrogen processing in lakes: an experimental approach. Freshwater Biology, 60(4), 646-662.

[30] Moiseenko, T. I., Gashkina, N. A., &Dinu, M. I. (2016). Enrichment of Surface Water by Elements: Effects of Air Pollution, Acidification and Eutrophication. Environmental Processes, 3(1), 39-58.

[31] Tchobanoglous, G., Burton F. L., &Stensel H. D. (2003). Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc., New York, NY: McGraw Hill.

[32] USEPA. (2012). The Assessment and TMDL Tracking and Implementation System. National Summary of State Information. http://iaspub.epa.gov/waters10/attains_nation_cy.control#total_assessed_waters.

[33] Singh, S. P., & Singh, B. P. (2010). Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India. International Journal of Earth Sciences, 99(1), 101-108.

[34] Min, K., Kang, H., & Lee, D. (2011). Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology and Biochemistry, 43(12), 2461-2469.

[35] Canavan, R. W., Slomp, C. P., Jourabchi, P., Van Cappellen, P., Laverman, A. M., & Van den Berg, G. A. (2006). Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. GeochimicaetCosmochimicaActa, 70(11), 2836-2855.

[36] Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van der Velde, G., &Roelofs, J. G. M. (2006). Internal eutrophication: how it works and what to do about it—a review. Chemistry and ecology, 22(2), 93-111.

[37] Gopal, B. (1990). Nutrient dynamics of aquatic plant communities. In: Ecology and management of aquatic vegetation in the Indian Subcontinent. (pp 177-197). Kluwer Academic Publishers, London.

[38] de Jonge, V. N., Elliott, M., &Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia, 475(1), 1-19.

[39] Bu, H., Meng, W., Zhang, Y., & Wan, J. (2014). Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators, 41, 187-197.

[40] Pandit, A.K. (1999). Freshwater ecosystems of the Himalaya. Parthenon Publishing, New York, London.

[41] Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., & Des Marais, D. J. (1997). Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and oceanography, 42(1), 133-141.

[42] Wiik, E., Bennion, H., Sayer, C. D., Davidson, T. A., McGowan, S., Patmore, I. R., & Clarke, S. J. (2015). Ecological sensitivity of marl lakes to nutrient enrichment: evidence from Hawes Water, UK. Freshwater Biology, 60(11), 2226-2247.

[43] Jeelani, G., & Shah, A. Q. (2006). Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environmental Geology, 50(1), 12-23.

[44] BerzasNevado, J. J., Rodríguez Martín-Doimeadios, R. C., Guzmán Bernardo, F. J., Jiménez Moreno, M., Ortega Tardío, S., Sánchez-Herrera Fornieles, M. M., &Doncel Pérez, A. (2009). Integrated pollution evaluation of the Tagus River in Central Spain. Environmental monitoring and assessment, 156(1), 461-477.

[45] Khan, F. A., & Ansari, A. A. (2005). Eutrophication: an ecological vision. The botanical review, 71(4), 449-482.

[46] Yu, S., Yu, G. B., Liu, Y., Li, G. L., Feng, S., Wu, S. C., & Wong, M. H. (2012). Urbanization impairs surface water quality: eutrophication and metal stress in the Grand Canal of China. River Research and Applications, 28(8), 1135-1148.

[47] Kalff, J. (2002). Limnology: inland water ecosystems (Vol. 592). New Jersey: Prentice Hall.

[48] Feichtinger, F., Smidt, S., &Klaghofer, E. (2002). Water and nitrate fluxes at a forest site in the North Tyrolean Limestone Alps. Environmental Science and Pollution Research, 9(2), 31.

[49] Hayakawa, A., Ikeda, S., Tsushima, R., Ishikawa, Y., & Hidaka, S. (2015). Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena, 133, 486-494.

[50] Müller, B., Meyer, J. S., &Gächter, R. (2016). Alkalinity regulation in calcium carbonate‐buffered lakes. Limnology and Oceanography, 61(1), 341-352.

[51] Chon, H. S., Ohandja, D. G., & Voulvoulis, N. (2012). The role of sediments as a source of metals in river catchments. Chemosphere, 88(10), 1250-1256.

[52] FAO, Food and agriculture organization. (2010). The wealth of waste: the economics of wastewater use in agriculture. Water Reports, (35).

[53] Markich, S. J., Brown, P. L., Batley, G. E., Apte, S. C., &Stauber, J. L. (2001). Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. Australasian Journal of Ecotoxicology, 7(2), 109-122.

[54] Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., &Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22(1), 1- 10.

[55] Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., &Zanchetta, G. (2009). A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). Journal of Paleolimnology, 41(3), 407-430.

[56] Knoll, L. B., Vanni, M. J., Renwick, W. H., &Kollie, S. (2014). Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshwater biology, 59(11), 2342-2353.

[57] Schaller, J., Vymazal, J., &Brackhage, C. (2013). Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: a review. Ecological Engineering, 53, 106- 114.

[58] Ammar, R., Kazpard, V., Wazne, M., El Samrani, A. G., Amacha, N., Saad, Z., & Chou, L. (2015). Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface. Environmental monitoring and assessment, 187(9), 579.

[59] Urban, N. R., Brezonik, P. L., Baker, L. A., & Sherman, L. A. (2009). Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnology and Oceanography, 39(4), 797-815.

[60] Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., & Tranvik, L. J. (2010). Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305), 478-481.

[61] de Vicente, I., Guerrero, F., & Cruz-Pizarro, L. (2010). Chemical composition of wetland sediments as an integrator of trophic state. Aquatic Ecosystem Health & Management, 13(1), 99-103.

[62] Malmaeus, J. M., & Rydin, E. (2006). A time-dynamic phosphorus model for the profundal sediments of Lake Erken, Sweden. Aquatic sciences, 68(1), 16-27.

[63] 63. Selig, U., & Schlungbaum, G. (2003). Characterisation and quantification of phosphorus release from profundal bottom sediments in two dimictic lakes during summer stratification. Journal of Limnology. 62(2), 151-162.

[64] Garland, J. L., Mackowiak, C. L., &Zabaloy, M. C. (2010). Organic waste amendment effects on soil microbial activity in a corn–rye rotation: Application of a new approach to community-level physiological profiling. Applied Soil Ecology, 44(3), 262-269.

[65] Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., & Hessen, D. O. (2009). Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. science, 326(5954), 835-837.

[66] Abell, J. M., Özkundakci, D., & Hamilton, D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems, 13(7), 966-977.

[67] Jing, L.D., xi Wu, C., tong Liu, J., guang Wang, H., &yiAo, H. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167- 174.

[68] Jing, L., Liu, X., Bai, S., Wu, C., Ao, H., & Liu, J. (2015). Effects of sediment dredging on internal phosphorus: A comparative field study focused on iron and phosphorus forms in sediments. Ecological Engineering, 82, 267- 271.

[69] Turner, A., Millward, G. E., & Le Roux, S. M. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88(3), 179-192.

[70] Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigairiver, Tamilnadu, India. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 137, 397-407.

[71] Kissoon, L. T., Jacob, D. L., Hanson, M. A., Herwig, B. R., Bowe, S. E., &Otte, M. L. (2013). Macrophytes in shallow lakes: Relationships with water, sediment and watershed characteristics. Aquatic Botany, 109, 39-48.

[72] Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., & Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29(2), 154-163.

[73] Ismail, Z., Othman, S. Z., Law, K. H., Sulaiman, A. H., &Hashim, R. (2014). Comparative Performance of Water Hyacinth ( Eichhorniacrassipes) and Water Lettuce (Pistastratiotes) in Preventing Nutrients Build-up in Municipal Wastewater. CLEAN - Soil, Air, Water, 43(4), 521-531.

[74] El-Otify, A. M. (2015). Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 4(4), 327- 337.

[75] Hasler, C. T., Butman, D., Jeffrey, J. D., &Suski, C. D. (2016). Freshwater biota and rising pCO2? Ecology Letters, 19(1), 98-108.

[76] Best, E.P.H., Woltman, H. & Jacobs, F.H.H. (1996). Sediment related growth limitation of Elodea nuttallii as indicated by a fertilization experiment. Freshwater Biology. 36, 33-44.

[77] Garbey, C., Murphy, K.J., Thiebaut G. & Muller, S. (2004). Variation in phosphorus content in aquatic plant tissues offers an efficient tool for determining plant growth strategies along a resource gradient. Fresh Water Biology, 49, 1-11.

[78] McElarney, Y., Rasmussen, P., Foy, R., & Anderson, N. (2010). Response of aquatic macrophytes in Northern Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquatic Botany, 93(4), 227-236.

[79] Shaltout, K. H., Galal, T. M., & El-Komi, T. M. (2014). Biomass, nutrients and nutritive value of PersicariasalicifoliaWilld.in the water courses of Nile Delta, Egypt. RendicontiLincei, 25(2), 167-179.