# Journal of Advanced Statistics

### Decompositions of Symmetry Using Odds-Symmetry for Square Contingency Tables

Download PDF (441.4 KB) PP. 23 - 30 Pub. Date: September 1, 2018

### Author(s)

**Shuji Ando**^{*}

Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, 125-8585, Japan**Kyohei Aoba**

Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, 125-8585, Japan

### Abstract

### Keywords

### References

[1] Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge, Massachusetts: The MIT Press.

[2] Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43, 572-574.

[3] Caussinus, H. (1965). Contribution à l’analyse statistique des tableaux de corr′elation. Annales de la Facult′e des Sciences de l’Universit′e de Toulouse, 29, 77-182.

[4] Darroch, J. N. and Silvey, S. D. (1963). On testing more than one hypothesis. Annals of Mathematical Statistics, 34, 555-567.

[5] Kateri, M, Gottard, A, and Tarantola, C. (2017). Generalised quasi-symmetry models for ordinal contingency tables, Australian & New Zealand Journal of Statistics, 59, 239-253.

[6] McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65, 413-418.

[7] Read, C. B. (1977). Partitioning chi-square in contingency tables: A teaching approach. Communications in Statistics - Theory and Methods, 6, 553-562.

[8] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, 412-416.

[9] Tahata, K. and Tomizawa, S. (2014). Symmetry and asymmetry models and decompositions of models for contingency tables. SUT Journal of Mathematics, 50, 131-165.

[10] Tominaga, K. (1979). Nippon no Kaisou Kouzou (Japanese Hierarchical Structure). University of Tokyo press, Tokyo (in Japanese).

[11] Tomizawa, S. (1984). Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society, 14, 35-42.

[12] Tomizawa, S. (1985). Decompositions for odds-symmetry models in a square contingency table with ordered categories. Journal of the Japan Statistical Society, 15, 151-159.

[13] Tomizawa, S., and Tahata, K. (2007). The analysis of symmetry and asymmetry: orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables. Journal de la Soci′et′e Fran?aise de Statistique, 148, 3-36.