Isaac Scientific Publishing

Journal of Advances in Molecular Biology

Approaches for Stimulating Proliferation of Stem Cells in Vitro

Download PDF (223.2 KB) PP. 23 - 32 Pub. Date: June 8, 2017

DOI: 10.22606/jamb.2017.11002

Author(s)

  • Weilong Liu
    State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Hui Li
    State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Cai Li*
    State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Abstract

With the increasing incidence rates in the complex human diseases, e.g., Alzheimer’s disease, spinal cord injury, and diabetes, there exists an urgent need to search for more effective and efficient therapies. Cell-based therapy has been considered to be a novel and effective therapeutic approach for the great potential of stem cells in their self-renewal and multipotential differentiational capacity. However, a major difficulty with the success of stem cell therapy is the availability of stem cells. The most serious issue is that only a limited number of stem cells can be extracted from adult tissue due to the decreasing frequency and differentiation potential with age. In order to achieve successful cell-based therapy, extensive ex vivo proliferation of stem cells is urgently required. Therefore, approaches to stimulate proliferation of stem cells are discussed in this article.

Keywords

Stem cells; stimulate; proliferation; cytokines; growth factors; genes

References

[1] K. Sadat, S. Ather, W. Aljaroudi, J. Heo, A. E. Iskandrian and F. G. Hage, “The effect of bone marrow mononuclear stem cell therapy on left ventricular function and myocardial perfusion,” Journal of Nuclear Cardiology Official Publication of the American Society of Nuclear Cardiology, vol. 21, no. 2, pp. 1-17, 2014.

[2] P. Rimmelé, S. Lofek-Czubek and S. Ghaffari, “Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity,” American Journal of Hematology, vol. 89, no. 12, pp. 235–238, 2014.

[3] B. Larijani, B. Arjmand, N. Ahmadbeigi, K. Falahzadeh, M. Soleimani, F. A. Sayahpour and H. R. Aghayan, “A simple and cost-effective method for isolation and expansion of human fetal pancreas derived mesenchymal stem cells, ” Archives of Iranian Medicine, vol. 18, no. 11, pp. 770-775, 2015.

[4] Y. Miura, “Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology,” International Journal of Hematology, vol. 103, no. 2, pp. 122-128, 2016.

[5] N. Baker, L. B. Boyette and R. S. Tuan, “Characterization of bone marrow-derived mesenchymal stem cells in aging,” Bone, vol. 70, pp. 37-47, 2015.

[6] J. Kim, J. W. Kang, J. H. Park, Y. Choi, K. S. Choi, K. D. Park, D. H. Baek, S. K. Seong, H. K. Min and H. S. Kim,“Biological characterization of long-term cultured human mesenchymal stem cells,” Archives of Pharmacal Research, vol. 32, no. 1, pp. 117-126, 2009.

[7] W. Wagner, S. Bork, G. Lepperdinger, S. Joussen, N. Ma, D. Strunk and C. Koch, “How to track cellular aging of mesenchymal stromal cells?,” Aging (Albany NY), vol. 2, no. 4, pp. 224-230, 2010.

[8] D. L. Jones and A. J. Wagers, “No place like home: anatomy and function of the stem cell niche,” Nature reviews Molecular cell biology, vol. 9, no. 1, pp. 11-21, 2008.

[9] L. Li, and T. Xie, “Stem cell niche: structure and function,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 605-631, 2005.

[10] D.T. Scadden, “The stem-cell niche as an entity of action,” Nature, vol. 441, no. 7097, pp. 1075–1079, 2006.

[11] T. Yin and L. Li, “The stem cell niches in bone,” The Journal of clinical investigation. vol. 116, no. 5, pp. 1195–1201, 2006.

[12] M. Pasarica, O. R. Sereda, L. M. Redman, D. C. Albarado, D. T. Hymel, L. E. Roan, J. C. Rood, D. H. Burk and S. R. Smith, “Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction macrophage chemotaxis, and inflammation without an angiogenic response,” Diabetes, vol. 58, no. 3, pp. 718-725, 2009.

[13] H. M. Chung, C. H. Won and J. H. Sung, “Responses of adipose-derived stem cells during hypoxia-enhanced skin-regenerative potential,” Expert opinion on biological therapy, vol. 9, no. 12, pp. 1499-1508, 2009.

[14] Z. Ivanovic, “Hypoxia or in situ normoxia: the stem cell paradigm,” Journal of cellular physiology, vol. 219, no. 2, pp. 271-275, 2009.

[15] J. C. Estrada, C. Albo, A. Bengur?′a, A. Dopazo, P. Lo′pez-Romero, L. Carrera-Quintanar, E. Roche, E. P. Clemente, J. A. Enr?′quez, A. Bernad and E. Samper,“Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis,” vol. 19, no. 5, pp. 743-755, 2012.

[16] M. G. Valorani, E. Montelatici, A. Germani, A. Biddle, D. D’Alessandro, R. Strollo, M. P. Patrizi, L. Lazzari, E. Nye, W. R. Otto, P. Pozzilli and M. R. Alison, “Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials,” Cell Proliferation, vol. 45, no. 3, pp. 225-238, 2012.

[17] Y. Xu, P. Malladi, M. Chiou, E. Bekerman, A. J. Giaccia and M. T. Longaker, “In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis,” Tissue Engineering, vol. 13, no. 12, pp. 2981-2993, 2007.

[18] Y. Yang, F. Sun, C. Zhang, H. Wang, G. Wu and Z. Wu, “Hypoxia promotes cell proliferation by modulating E2F1 in chicken pulmonary arterial smooth muscle cells,” Journal of Animal Science and Biotechnology, vol. 4, no. 3, pp. 205-210, 2013.

[19] E. S. Hwang, J. S. Ok and S. Song, “Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells,” Stem Cell Reviews & Reports, vol. 12, no. 3, pp. 315-326, 2016.

[20] A. I. Hoch and J. K. Leach, “Concise Review: Optimizing Expansion of Bone Marrow Mesenchymal Stem/Stromal Cells for Clinical Applications,” Stem Cells Translational Medicine, vol. 3, no. 5, pp. 643-652, 2014.

[21] Y. Sun, W. Li, Z. Lu, R. Chen, J. Ling, Q. Ran, R. L. Jilka and X. D. Chen, “Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix,” The FASEB Journal, vol. 25, no. 5, pp. 1474-1485, 2011.

[22] J. Li, S. G. Kim and J. Blenis, “Rapamycin: one drug, many effects,” Cell metabolism, vol. 19, no. 3, pp. 373-379, 2014.

[23] D. E. Harrison, R. Strong, Z. D. Sharp, J. F. Nelson, C. M. Astle, K. Flurkey, N. L. Nadon, J. E. Wilkinson, K.Frenkel, C. S. Carter, M. Pahor, M. A. Javors, E. Fernandez and R. A. Miller, “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392-395, 2009.

[24] K. J. Pearson, J. A. Baur, K. N. Lewis, L. Peshkin, N. L. Price, N. Labinskyy, W. R. Swindell, D. Kamara, R. K.Minor, E. Perez, H. A. Jamieson, Y. Q. Zhang, S. R. Dunn, K. Sharma, N. Pleshko, L. A. Woollett, A. Csiszar, Y.J. Ikeno, D. L. Couteur, P. J. Elliott, K. G. Becker, P. Navas, D. K. Ingram, N. S. Wolf, Z. Ungvari, D. A. Sinclair and R. D. Cabo, “Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span,” Cell metabolism, vol. 8, no. 2, pp. 157-168, 2008.

[25] L. L. Lairson, C. A. Lyssiotis, S. Zhu and P. G. Schultz, “Small molecule-based approaches to adult stem cell therapies. Annual review of pharmacology and toxicology,” Pharmacology and Toxicology, vol. 53, no. 53, pp. 107-125, 2013.

[26] G. Song, Y. Ju and H. Soyama, “Growth and proliferation of bone marrow mesenchymal stem cells affected by type I collagen, fibronectin and bFGF,” Materials Science & Engineering C, vol. 28, no. 8, pp. 1467-1471, 2008.

[27] E. Jeon, Y. R. Yun, W. Kang, S. Lee, Y. H. Koh, H. W. Kim, C. K. Suh and J. H. Jang, “Investigating the Role of FGF18 in the Cultivation and Osteogenic Differentiation of Mesenchymal Stem Cells,” Plos One, vol. 7, no. 8, pp. e43982, 2012.

[28] P. Qiu, W. Song, Z. Niu, Y. Bai, W. Li, S. H. Pan, S. Sha and J. L. Hua, “Platelet-derived growth factor promotes the proliferation of human umbilical cord-derived mesenchymal stem cells,” Cell Biochemistry & Function, vol. 31, no. 2, pp. 159-165, 2013.

[29] J. Shen, Q. Gao, Y. Zhang and Y. He, “Autologous platelet rich plasma promotes proliferation and chondrogenic differentiation of adipose derived stem cells,” Molecular Medicine Reports, vol. 12, no. 2, pp. 1298-1303, 2015.

[30] J. Pons, Y. Huang, J. Arakawa-Hoyt, D. Washko, J. Takagawa, J. Q. Ye, W. Grossman and H. Su, “VEGF improves survival of mesenchymal stem cells in infarcted hearts,” Biochemical & Biophysical Research Communications, vol. 376, no. 2, pp. 419-422, 2008.

[31] A. Mishra, P. Tummala, A. King, B. Lee, M. Kraus, V. Tse and C. R. Jacobs, “Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation,” Tissue Engineering Part C Methods, vol. 15, no. 3, pp. 431-435, 2009.

[32] Y. Feng, Y. Sun, W. Jia and C. Zhang, “Platelet-rich plasma and 1,25(OH)2 vitamin D3 synergistically stimulate osteogenic differentiation of adult human mesenchymal stem cells,” Biotechnology Letters, vol. 32, no. 5, pp. 635-642, 2010.

[33] N. Kakudo, T. Minakata, T. Mitsui, S. Kushida, F. Z. Notodihardjo and K. Kusumoto, “Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts,” Plastic & Reconstructive Surgery, vol. 122, no. 5, pp. 1352-1360, 2008.

[34] J. P. Vogel, K. Szalay, F. Geiger, M. Kramer, W. Richter and P. Kasten, “ Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics,” Platelets, vol. 17, no. 7, pp. 462-469, 2006.

[35] H. M. LI, D. Liu, Y. L. YU and T. Wu, “Experimental research of the promotion effect of autogeneic PRP on osteogenic differentiation of human adipose-derived stem cells in vitro,” Chinese Journal of Reparative and Reconstructive Surgery, vol. 23, no. 6, pp. 732-736, 2009.

[36] S. Tavakolinejad, M. Khosravi, B. Mashkani, B. A. Ebrahimzadeh, M. N. Sanjar, M. R. Parizadeh and A. D.Hamidi, “The effect of human platelet-rich plasma on adipose-derived stem cell proliferation and osteogenic differentiation,” Iranian Biomedical Journal, vol. 18, no. 3, pp. 151-157, 2014.

[37] P. R. Amable, M. V. Teixeira, R. B. Carias, J. M. Granjeiro and R. Borojevic, “Mesenchymal Stromal Cell Proliferation, Gene Expression and Protein Production in Human Platelet-Rich Plasma-Supplemented Media,” PLoS One, vol. 9, no. 8, pp. e104662, 2014.

[38] T. S. Kleplová, T. Soukup, V. ?ehá?ek and J. Suchánek, “Human plasma and human platelet-rich plasma as a substitute for fetal calf serum during long-term cultivation of mesenchymal dental pulp stem cells,” vol. 57, no. 3, pp. 119-126, 2014.

[39] V. Govindasamy, V. S. Ronald, A. N. B Abdullah, K. R. Ganesan Nathan, Z. A. Aziz, M. Abdullah, R. B. Zain, N.H. Kasim, S. Musa and R. R. Bhonde, “Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications,” Cytotherapy, vol. 13, no. 10, pp. 1221-1233, 2011.

[40] B. Chen, H. Sun, H. Wang, H. Kong, F. Chen and Q. Yu, “The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars,” Biomaterials, vol. 33, no. 20, pp. 5023–5035, 2012.

[41] C. Rauch, E. Feifel, E. M. Amann, H. P. Sp?tl, H. Schennach, W. Pfaller and G. Gstraunthaler, “Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media,” ALTEX, vol. 28, no. 4, pp. 305-316, 2011.

[42] D. M. Dohan Ehrenfest, P. Doglioli, G. M. de Peppo, M. Del Corso, J. B. Charrier, “Choukroun’s platelet-rich fibrin(PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way,” Archives of oral biology, vol. 55, no. 3, pp. 185–194, 2010.

[43] A. Drengk, A. Zapf, E. K. Stürmer, K. M. Stürmer, K. H. Frosch, “Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes,” Cells Tissues Organs, vol. 189, no. 5, pp. 317-326, 2008.

[44] M. Rodrigues, L. G. Griffith and A. Wells, “Growth factor regulation of proliferation and survival of multipotential stromal cells,” Stem Cell Research & Therapy, vol. 1, no. 4, pp. 32, 2010.

[45] J. H. Lee, S. Um, J. H. Jang and B. M. Seo. “Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells,” cell and tissue research, vol. 348, no. 3, pp. 475-484, 2012.

[46] P. Salehinejad, N. B. Alitheen, A. Mandegary, S. N. Nematollahi-mahani and E. Janzamin, “Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells,” In Vitro Cellular & Developmental Biology - Animal, vol. 49, no. 7 , pp. 515-526, 2013.

[47] M. K. Skinner, “Secretion of growth factors and other regulatory factors,” The Sertoli cell, vol. 18, pp. 237-248, 1993.

[48] A. I. Othberg, A. E. Willing, D. F. Cameron, A. Anton, S. Saporta, T. B. Freeman and P. R. Sanberg, “Trophic Effect of Porcine Sertoli Cells on Rat and Human Ventral Mesencephalic Cells and hNT Neurons In Vitro,” Cell Transplantation, vol. 7, no. 2, pp. 157-164, 1998.

[49] H. Tian, M. Guo, Y. Zhuang, J. Chu and S. Zhang, “Enhanced proliferation of bone marrow mesenchymalstem cells by co-culture with TM4 mouse Sertoli cells: involvement of the EGF/PI3K/AKT pathway,” Molecular & Cellular Biochemistry, vol. 393, no. 1-2, pp. 155-164, 2014.

[50] F. Zhang, Y. Hong, W. Liang, T. Ren, S. Jing and J. Lin, “Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells,” Biochemical & Biophysical Research Communications, vol. 427, no. 1, pp. 86-90, 2012.

[51] J. Chen, “Multiple signal pathways in obesity-associated cancer,” Obesity Reviews, vol. 12, no. 12, pp. 1063-1070, 2011.

[52] A. Brunet, A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden3, John Blenis and M. E. Greenberg, “Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor,” Cell, vol. 96, no. 6, pp. 857-868, 1999.

[53] V. K. Srivastava, R. K. Gara, M. L. B. Bhatt, D.P. Sahu and D. P. Mishra, “Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway,” Biochemical & Biophysical Research Communications, vol. 401, no. 4, pp. 40-45, 2011.

[54] N. Li, X. Bu, X. Tian, P. Wu and L. Y. P. Huang, “Fatty acid synthase regulates proliferation and migration of colorectal cancer cells via HER2-PI3K/Akt signaling pathway,” Nutrition & Cancer, vol. 64, no. 6, pp. 864-870, 2011.

[55] J. Kizhakkayil, F. Thayyullathil, S. Chathoth, A. Hago, M. Patel and S. Galadari, “Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells,” Biochemical & Biophysical Research Communications, vol. 394, no. 3, pp. 476-481, 2010.

[56] P. Liu, H. Cheng, T.M. Roberts and J. J. Zhao, “Targeting the phosphoinositide 3-kinase pathway in cancer,” Nature reviews Drug discovery, vol. 8, no. 8, pp. 627-644, 2009.

[57] M. Mar?dziak, K. Tomaszewski, P. Polinceusz, D. Lewandowski and K. Marycz, “Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymalstem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway,” Electromagnetic Biology and Medicine, pp. 1-10, 2009.

[58] Y. Zhang, J. Lv, H. Guo, X. Wei, W. Li and Z. Xu, “Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway,” Cell biochemistry and function, vol.33, no. 2, pp. 51-58, 2015.

[59] W. Li, D. Du, H. Wang, Y. Liu, X. Lai, F. Jiang, D. Chen, Y. Zhang, J. Zong and Y. Li, “Silent information regulator 1 (SIRT1) promotes the migration and proliferation of endothelial progenitor cells through the PI3K/Akt/eNOS signaling pathway,” International journal of clinical and experimental pathology, vol. 8, no. 3, pp. 2274-2287, 2015.

[60] W. P. Daley, S. B. Peters and M. Larsen, “Extracellular matrix dynamics in development and regenerative medicine,” Journal of Cell Science, vol. 121, no. 3, pp. 255-264, 2008.

[61] J. Li, K. C. Hansen, Y. Zhang, C. Dong, C. Z. Dinu, M. Dzieciatkowska and M. Peia, “Rejuvenation of chondrogenic potential in a young stem cell microenvironment,” Biomaterials, vol. 35, no. 2, pp. 642-653, 2013.

[62] C. H. Sun, X. Liu, L. Qi, J. P. Xu, J. Zhao, Y. Zhang, S. L. Zhang and J. Y. Miao, “Modulation of vascular endothelial cell senescence by integrin β4,” Journal of Cellular Physiology, vol. 225, no. 3, pp. 673-681, 2010.

[63] D. P. Pioletti, H. Takei, T. Lin, P. V. Landuyt, Q. J. Ma, S. Y. Kwonb and K.-L P. Sunga, “The effects of calcium phosphate cement particles on osteoblast functions,” Biomaterials, vol. 21, no. 11, pp. 1103-1114, 2000.

[64] U. Lindner, J. Kramer, J. Behrends, B. Driller, N. O. Wendler, F. Boehrnsen, J. Rohwedel and P. Schlenke.“Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured withbasement-membrane extracellular matrix proteins,” Cytotherapy, vol. 12, no. 8, pp. 992-1005, 2010.

[65] D. E. Discher, D. J. Mooney and P. W. Zandstra, “Growth factors, matrices, and forces combine and control stem cells,” Science, vol. 324, no. 5935, pp. 1673-1677, 2009.

[66] F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell, vol. 5, no. 1, pp. 17-26, 2009.

[67] A. J. Engler, S. Sen, H. L. Sweeney and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677-689, 2006.

[68] M. L. Decaris, J. K. Leach, “Design of experiments approach to Engineer cellsecreted matrices for directing osteogenic differentiation,” Annals of biomedical engineering, vol. 39, no. 4, pp. 1174-1185, 2011.

[69] A. K. Kundu, C. B. Khatiwala and A. J, “Putnam. Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates,” Tissue Engineering Part A, vol. 15, no. 2, pp. 273-283, 2008.

[70] J. A. Santiago, R. Pogemiller and B. M. Ogle, “Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices,” Tissue Engineering Part A, vol. 15, no. 12, pp. 3911-3922, 2009.

[71] P. D. Cooper, A. M. Burt and JN Wilson, “Critical Effect of Oxygen Tension on Rate of Growth of Animal Cells in Continuous Suspended Culture,” Nature, vol. 182, no. 4648, pp. 1508-1509, 1958.

[72] I. Berniakovich and M. Giorgio, “Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells,” International Journal of Molecular Sciences, vol. 14, no. 1, pp. 2119-2134, 2013.

[73] S. V. Boregowda, V. Krishnappa, J. W. Chambers, P. V. Lograsso, W. T. Lai, L. A. Ortiz and D. G. Phinney,“Atmospheric Oxygen Inhibits Growth and Differentiation of Marrow-Derived Mouse Mesenchymal Stem Cells via a p53-Dependent Mechanism: Implications for Long-Term Culture Expansion,” Stem Cells, vol. 30, no. 5, pp.975-987, 2012.

[74] S. P. Hung, J. H. Ho, Y. R. V. Shih, T. Lo and O. K. Lee, “Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 30, no. 2, pp. 260-266, 2012.

[75] W. L. Grayson, F. Zhao, B. Bunnell and T. Ma, “Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells,” Biochemical & Biophysical Research Communications, vol. 358, no. 3, pp. 948-953, 2007.

[76] Y. Yamamoto, M. Fujita, Y. Tanaka, I. Kojima, Y. Kanatani, M. Ishihara and S.Tachibana, “Low Oxygen Tension Enhances Proliferation and Maintains Stemness of Adipose Tissue–Derived Stromal Cells,” Bioresearch Open Access, vol. 2, no. 3, pp. 199-205, 2013.

[77] P. R. Crisostomo, Y. Wang, T. A. Markel, M. Wang, T. Lahm and D. R. Meldrum. “Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism,” American Journal of Physiology-Cell Physiology, vol. 294, no. 3, pp. c675-682, 2008.

[78] J. R. Choia, B. Pingguan-Murphya, W. A. B. W. Abasa, M. A. N. Azmib, S. Z. Omarb, K. H. Chuac and W. K. Z. W. Safwania, “ Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells,” Biochemical and biophysical research communications, vol. 448, no. 2, pp. 218-224, 2014.

[79] S. B. Werlea, P. Chagastelles, P. Pranke and L. Casagrande, “The effects of hypoxia on in vitro culture of dental-derived stem cells,” Archives of oral biology, vol. 68, no. 2, pp. 13-20, 2016.

[80] A. Stein, D. Benayahu, L. Maltz and U. Oron, “Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro,” Photomedicine & Laser Surgery, vol. 23, no. 2, pp. 161-166, 2005.

[81] H. Tuby, L. Maltz and U. Oron, “Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture,” Lasers in Surgery & Medicine, vol. 39, no. 4, pp. 373-378, 2007.

[82] B. Mvula, T. J. Moore and H. Abrahamse, “Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells,” Lasers in Medical Science, vol. 24, no. 1, pp. 33-39, 2010.

[83] J. A. D. Villiers, N. N. Houreld and H. Abrahamse, “Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells Over 72 Hours and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid,” Stem Cell Reviews, vol. 7, no. 4, pp. 869-882, 2011.

[84] F. Ginani, D. M. Soares, C. A. G Barboza, “Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review,” Lasers in medical science, vol. 30, no. 8, pp. 2189-2194, 2015.

[85] X. Chen, H. Xu, C. Wan, M. Mccaigue and L. Gang, “ Bioreactor Expansion of Human Adult Bone Marrow-Derived Mesenchymal Stem Cells,” Stem Cells, vol. 24, no. 9, pp. 2052-2059, 2006.

[86] J. E. Frith, B. Thomson and P. G. Genever, “Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential,” Tissue Engineering Part C Methods, vol. 16, no. 4, pp. 735-749, 2010.

[87] G. Eibes, F. D. Santos, P. Z. Andrade, J. S. Boura, M. M. A. Abecasis, C. L. D. Silvaa, J. M. S. Cabrala,“Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system,” Journal of Biotechnology, vol. 146, no. 4, pp. 194-197, 2010.

[88] Y. Yang, F. M. V. Rossi, E. E. Putnins, “Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture,” Biomaterials, vol. 28, no. 20, pp. 3110-3120, 2007.

[89] S. Frauenschuh, E. Reichmann, Y. Ibold, P. M. Goetz, M. Sittinger, J. Ringe. “A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells,” Biotechnology Progress, vol. 23, no. 1, pp. 187-193, 2007.

[90] S. Diederichs, S. R?ker, D. Marten, A. Peterbauer, T. Scheper, M. V. Griensven and C.Kasper, “Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z?;RP platform,” Biotechnology Progress, vol. 25, no. 6, pp. 1762-1771, 2009.

[91] A. Reichardt, B. Polchow, M. Shakibaei, W. Henrich, R. Hetzer and C. Lueders, “Large Scale Expansion of Human Umbilical Cord Cells in a Rotating Bed System Bioreactor for Cardiovascular Tissue Engineering Applications,”Open Biomedical Engineering Journal, vol. 7, no. 7, pp.50-61, 2013.

[92] A. Papadimitropoulos, E. Piccinini, S Brachat, A. Braccini, D. Wendt, A. Barbero, C. Jacobi and I. Martin,“Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion,” Plos One, vol. 9, no. 7, pp. e102359, 2014.

[93] S. Yang, K. F. Leong, Z. Du, C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679-689, 2001.

[94] K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, S. Yamanaka, “The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells,” Cell, vol.113, no. 5, pp. 631-642, 2003.

[95] I. Chambers, D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie and A. Smith, “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643-655, 2003.

[96] H. Darr, Y. Mayshar and N. Benvenisty, “Overexpression of NANOG in human ES cells enables feeder-freegrowth while inducing primitive ectoderm features,” Development, vol.133, no. 133, pp. 1193-1201, 2006.

[97] T. Tondreau, N. Meuleman, A. Delforge, M. Dejeneffe, R. Leroy, M. Massy, C. Mortier, D. Bron and L. Lagneaux,“Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity,” Stem Cells, vol. 23, no. 8, pp. 1105-1112, 2005.

[98] M. J. Go, C. Takenaka and H. Ohgushi, “ Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities,” Experimental Cell Research,vol. 314, no. 5, pp. 1147-1154, 2008.