Isaac Scientific Publishing

Journal of Advances in Applied Physics

Variation of Temperatures of Discharge with a Liquid Electrode on the Basis of Distilled Water near the Ignition Threshold Mode

Download PDF (344.5 KB) PP. 15 - 19 Pub. Date: May 1, 2020

DOI: 10.22606/jaap.2020.22001

Author(s)

  • Livia Mesarosh*
    Ferenc Rakoczi II Transcarpathian Hungarian Institute, Berehovo, Ukraine
  • Mihailo Chuchman
    Uzhgorod National University, Uzhgorod, Ukraine
  • Aleksandr Shuaibov
    Uzhgorod National University, Uzhgorod, Ukraine

Abstract

Emission spectra of glow discharge with copper and a liquid electrode on the basis of distilled water in the range of wavelengths of 200-700 nm are investigated. For discharge currents from 12 mA to 32 mA the values of the electron, vibrational and rotational temperatures are obtained.

Keywords

Electron, vibrational and rotational temperatures, glow discharge, ignition threshold mode, distilled water.

References

[1] Q. Chen, T. Kaneko, R. Hatakeyama, “Reductants in gold nanoparticle synthesis using gas–liquid interfacial discharge plasmas,” Applied Physics Express, vol. 5, 086201-3p, 2012.

[2] M. Klas, S. Matejcik, M. Radmilovic-Radjenovic, B. Radjenovic, “Electrical breakdown and volt-ampere characteristics in water vapor in microgaps,” EPL, vol. 99, 57001-4p, 2012.

[3] Plasma chemistry and catalysis in gases and liquids, edited by V.I. Parvulescu, M. Magureanu, P. Lukes. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA, 2012.

[4] F. Al-Momani, E. Touraud, J.R. Degorce-Dumas, J. Roussy, O. Thomas, “Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis,” J. Photochem. Photobiol. A: Chem., vol. 153, no. 1, pp.191-197, 2002.

[5] Z. Kozáková, “Electric discharges in water solutions,” Ph.D. thesis, Brno University of Technology Faculty of Chemistry, Brno, 2011.

[6] I. Levchenko, K. Bazaka, O. Baranov, R.M. Sankaran, A. Nomine, T. Belmonte, S. Xu, “Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation,” Applied Physics Reviews, vol. 5, 021103 -31p, 2018.

[7] P. Jamroz, W. Zyrnicki, “Spectroscopic characterization of miniaturized atmospheric-pressure dc glow discharge generated in contact with flowing small size liquid cathode,” Plasma Chem. Plasma Process., vol. 31, pp. 681- 696, 2011.

[8] P. Mezei, T. Cserfalvi, “A critical review of published data on the gas temperature and the electron density in the electrolyte cathode atmospheric glow discharges,” Sensors, vol. 12, pp. 6576-6586, 2012.

[9] M.R. Webb, F.J. Andrade, G. Gamez, R. McCrindleb, G.M. Hieftje, “Spectroscopic and electrical studies of a solution-cathode glow discharge,” J. Anal. At. Spectrom., vol. 20, pp. 1218-1225, 2005.

[10] L.V. Mesarosh, O.K. Shuaibov, M.P. Chuchman, “Investigation of glow discharge over the surface of distilled water,” Scientific Herald of Uzhhorod University: Series Physics, no. 32, pp. 82-88, 2012.

[11] A.K. Shuaibov, M.P. Chuchman, L.V. Mesarosh, “Electrical characteristics of a glow discharge in air over the surface of aluminum sulfate aqueous solution,” Surface Engineering and Applied Electrochemistry, vol. 54, no. 3, pp. 267-272, 2018.

[12] P.L. Smith, C. Heise, J.R. Esmond, R.L. Kurucz, Atomic spectral line database from CD-ROM 23 of R.L. Kurucz. Cambridge: Smithsonian Astrophysical Observatory, 1995. http://cfa-www.harvard.edu/amp.

[13] Plasmas diagnostics, ed. by W. Lochte-Holtgreven. New York: American Elsevier, 1968.

[14] N.E. Kuz’menko, L.A. Kuznetsova, Y.Y. Kuzyakyn, Factors of Frank-Condon for diatomic molecules. Moscow: Moscow State University, 1984.

[15] Gr′egoire de Izarra, Jean-Marie Cormier, “New methods to determine temperatures from UV OH spectrum” J. Phys. D: Appl. Phys., vol. 46, 105503-17p, 2013.

[16] A.A. Radtsyh, B.M. Smyrnov, Parameters of atoms and atomic ions. Moscow: Enerhoatomyzdat, 1986.

[17] L.V. Mesarosh, A.K. Shuaibov, Relevant Problems in Quantum Physics. Practical Manual. Uzhgorod: Goverla, 2015.

[18] L.V. Mesarosh, A.K. Shuaibov, M.P. Chuchman, “The investigation of electrons temperature in glow-discharge above the surface of the distilled water,” Proc. of the VIII International scientific conference “Electronics and Applied Physics”, Taras Shevchenko National University of Kyiv. Faculty of Radiophysics. Ukraine, 2012, pp. 146-147.

[19] A.K. Shuaibov, M.P. Chuchman, L.V. Mesarosh, “Characteristics of a glow discharge in atmospheric pressure air over the water surface,” Technical Physics, vol. 59, no. 6, pp. 847-851, 2014.

[20] V.B. Yuferov, E.V. Mufel, V.I. Tkachov, S.V. Sharyi, A.N. Shapoval, “On some features of plasma discharge above water surface,” Ukr. J. Phys., vol. 55, no. 6, pp. 671-676, 2010.

[21] Ya.I. Kornev, N.A. Yavorovsky, G.F. Ivanov, G.G. Saveliev, T.V. Shamanskaya, “The use of emission spectra to study the characteristics of a barrier discharge in water-air environment,” Bulletin of the Tomsk Polytechnic University, vol. 306, no. 5, pp. 78-82, 2003.

[22] A.A. General, V.A. Kelman, Yu.V. Zhmenyak, Yu.O. Shpenik, “A UV source on hydroxyl molecules operating in a pulsed–periodic mode,” Instruments and Experimental Techniques, vol. 53, no. 4, pp. 558-561, 2010.

[23] M.P. Chuchman, L.V. Mesarosh, A.K. Shuaibov, V.V. Kiris, N.V. Tarasenko, “Emission spectra of glow discharge in the air with an electrode on the basis of distilled water,” Journal of Applied Spectroscopy, vol. 83, no. 5, pp. 742-746, 2016.

[24] A. Choukourov, A.S. Manukyan, D.A. Shutov, V.V. Rybkin, “Physico-chemical properties of dc current discharge plasma with liquid cathode,” Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., vol. 59, no. 12, pp. 4- 16, 2016.

[25] P. Bruggeman, J.J. Liu, J. Degroote, M.G. Kong, J. Vierendeels, C. Leys, “DC excited glow discharges in atmospheric pressure air in pin-to-water electrode systems,” J. Phys. D: Appl. Phys., vol. 41, no. 7, 215201-11p, 2008.

[26] P. Mezei, T. Cserfalvi, “Electrolyte cathode atmospheric glow discharges for direct solution analysis,” Applied Spectroscopy Reviews, vol. 42, pp. 573-604, 2007.