Isaac Scientific Publishing

Advances in Astrophysics

Nonlocal Theory of Ball Lightning

Download PDF (786 KB) PP. 7 - 40 Pub. Date: February 20, 2019

DOI: 10.22606/adap.2019.41002


  • B. V. Alexeev
    Moscow Technological University


The existence in a bounded region of a self-consistent plasma object is established by the
methods of non-local physics as a result of the solution of the Cauchy problem. The non-local theory
is created for mathematical modeling of plasmoids and ball lightnings. The solitons have the
character of the stable quantum objects in the self consistent electric field. Particularly these effects
can be considered as explanation of the existence of lightning balls. The delivered theory
demonstrates the great possibilities of the generalized quantum hydrodynamics in investigation of the
quantum solitons. The theory leads to solitons as typical formations in the generalized quantum
hydrodynamics. It is proved that all ball lightnings theories based on local description are wrong in


Foundations of the theory of transport processes, nonlocal quantum hydrodynamic
equations, the theory of plasmoids, foundations of non-local physics, the theory of lighting balls.


[1] Alexeev B.V., Generalized Boltzmann Physical Kinetics. Elsevier Amsterdam, The Netherlands (2004) 368p.

[2] Alexeev B.V., Generalized Quantum Hydrodynamics and Principles of Non-Local Physics, J.Nanoelectron. Optoelectron. 3,143 (2007).

[3] Alexeev B.V., Unified Non-local Theory of Transport Processes, Elsevier Amsterdam, The Netherlands (2015) 644p.

[4] Alexeev B.V., Unified Non-local Relativistic Theory of Transport Processes, Elsevier Amsterdam, The Netherlands (2016) 455p.

[5] Alexeev B.V., Nonlocal Astrophysics. Dark matter, Dark Energy, Physical Vacuum. Elsevier Amsterdam, The Netherlands (2017) 454p.

[6] Madelung E. Eine anschauliche Deutung der Gleichung von Schrödinger // Naturwissenschaften. 1926. Bd. 14. S. 1004–1004.

[7] Bohm D. Quantum Theory, New York, Prentice-Hall, Inc., 1952.

[8] Chapman S., Cowling T.G., “The Mathematical Theory of Non-uniform Gases”, Cambridge: At the University Press, (1952).

[9] Bell J.S., On the Einstein Podolsky Rosen paradox, Physics, 1, 195 (1964).

[10] Gulin A.V., Samarskii A.A. On some results and problems in the theory of stability of difference schemes. Matematicheskii sbornik, v. 99(141), N3, p. 299 - 321, 1976.

[11] Boltzmann L. Prinzipe der Mechanik. J.-A. Barth, Leipzig, 1897.

[12] Brillouin L. La théorie des quanta et l’atome de Bohr. (Chapter 7), Blanchard, Paris, 1922.

[13] Stenhoff M. Ball Lightning. An Unsolved Problem in Atmospheric Physics. New York: Kluwer/Plenum, 1999.

[14] К. L. Cоrum, J. F. Cоrum. Experiments for Creating of Ball Lightning with the Aid of High-frequency Discharge and Electrochemical Fractal Clusters. Soviet Phys. Uspekhi. 1990. V. 160, N. 4, P. 47 - 58 (in Russuan).

[15] Silberg P.A. Ball lightning. In: Problems of Atmospheric and Space Electricity. Proc. 3d International Conference on Atmocpheric and Space Electricity. 1963, Montreux, Zwitzerland. Ed. S. C. Coronititi, Amsterdam, Elsevier, 1965. P. 303 - 322.

[16] Klimov A.I., Bychkov V.L.. High Energetic Long-lived Non-equilibrium Ball Plasmoids in a Gas Flow and in Atmosphere. Proc. 6th Int. Symp. on Ball Lightning (ISBL’99). 1999, Antwerp, Belgium, P. 212 - 215.

[17] Grigor’ev A.I., Grigor’eva I.D., Shiriaeva S.O.. Observations of ball lightning and their analysis. In: Khimia Plasmy. Ed. B. М. Smirnov. Мoscow: Energoatomizdat, 1993. P. 218 - 248 (in Russian).

[18] Amirov A.Kh., Bychkov V.L., Strijev A.Yu.. Principles of Creating and Processing Data Bank: Meteorologic Applications Illustrated with Regard to Ball Lightning Processing. Journ. of Meteorology. 1995, V.20, N. 197, P. 85 - 93.

[19] Rayle W.D. Ball Lightning Characteristics. NASA Techn. Note –D –3188, 1966

[20] McNally J.R., Jr. Preliminary Report on the Ball Lightning. Oak-Ridge Nat. Lab/ No 3938, May 1966.

[21] Egely G.. Analysis of Hungarian Ball Lightning Observations. In: Progress in Ball Lightning Research. Ed. A. G. Keul. Proc. VIZOTUM, P. 22. The Vizotum Project, Salzburg, Austria, 1993.

[22] Hubert P. Nouvelle Enquete sur la Foudre en Boule – Analyse et Discussion des Resultats. Rapport PH/SC/96001, Commisariat a l’Energy Atomique, Service d’Electronique Physique, Centre d’Etudes Nucleairs de Saclay, France, 1996.

[23] Dijkhuis G.C. Statistics and Structure of Ball Lightning. Proc. 3d Intern. Symp. on Ball Lightning (ISBL’92), 1992, Los Angeles, USA.

[24] Smirnov, The Observational Properties of Ball Lightning //Successes of Physical Sciences. 1992. Vol. 162, № 8. Pp. 43 - 81. (Смирнов Б.М. Наблюдательные свойства шаровой молнии //Успехи физических наук. 1992. Т. 162, № 8. С. 43 - 81.)

[25] Stakhanov, I. P. Physical nature of ball lightning. - Moscow: Atomizdat, 1979.

[26] Stakhanov I. P. On the physical nature of ball lightning. - Moscow: Energoatomizdat, 1985.

[27] Brand W. Der Kugelblitz. - Hamburg: Henri Grand Verlag, 1923.

[28] Roth, J. Reece, Ball lightning: what nature is trying to tell the plasma research community// Fusion Technology 1995; V. 27, P. 255-270.

[29] Byturin V., Bocharov A., Klimov A.,, Analysis of Non-Thermal Plasma Aerodynamics Effects, 44 AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2006-1209, 9-12 January 2006, Reno, NV, 1. 2. th. p.8.

[30] Klimov A.I., Int. Journ. Unconventional Electromagnetics and Plasmas (UEP), 2011,

[31] Egorov A. I., Stepanov S. I. Long-living plasmoids-analogues of ball lightning, arising in humid air. //Journal of technical physics. 2002. - Vol. 72, N12. p. 104

[32] Oreshko A.G., Proc. XVIII Int. Conf. on Gas Discharge and Their Applications, Greifswald 2010, p.526.