# Advances in Astrophysics

### An Alternative Description of the Schwarzschild Black Hole

Download PDF (281.2 KB) PP. 41 - 45 Pub. Date: February 20, 2019

### Author(s)

**Yuriy Zayko**

Division of Applied Informatics, Russian Presidential Academy of National Economy and Public Administration, Stolypin Volga Region Institute, Saratov, Russia

### Abstract

### Keywords

### References

[1] M.O. Katanaev, Geometric methods in mathematical physics, arXiv: 1311.0733v3 [math-ph] 20 Nov 2016.

[2] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, (4th ed.), Butterworth-Heinemann, 1975.

[3] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, in 3 vol., W.H. Freeman and Co, San Francisco, 1973.

[4] Y.N. Zayko, “Maxwel’s Electrodynamics in Curved Space-Time,” World Journal of Innovative Research, vol. 1, no. 1, pp. 16-19, 2016,

[5] Y.N. Zayko, “The Proof of the Riemann Hypothesis on a Relativistic Turing Machine,” International Journal of Theoretical and Applied Mathematics, vol. 3, no. 6, pp. 219-224, 2017.

[6] J. D. Bekenstein, “Black Holes and Entropy,” Phys. Rev. D, vol. 7, no. 8, pp. 2333-2346, 1973.

[7] R.C. Tolman, Relativity, Thermodynamics and Cosmology. Oxford, at the Clarendon Press, 1969.

[8] R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM Journ. Res. Develop., vol. 5, pp. 183 – 191, 1961.

[9] L. Smolin, Time Reborn: From the Crisis in Physics to the Future of the Universe, Houghton Mifflin Harcourt, 2013.

[10] N. Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine, Paris, (Hermann & Cie) & Camb. Mass. (MIT Press) ISBN 978-0-262-73009-9; 1948, 2nd revised ed. 1961.