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Abstract Let E, F be (real) vector spaces and G a topological vector space and assume that there
is a bilinear map b : E × F → G . We call E, F, G an abstract triple (abstract duality pair with
respect to G) and denote it by (E, F : G). We write b(x, y) = x · y for x ∈ E, y ∈ F . The weakest
topology on E such that all of the linear maps x→ x · y from E into G are continuous for y ∈ F is
denoted by w(E, F ). We study sequential compactness and sequential completeness for this topology
when E is a space of vector valued, bounded, finitely additive set functions or the space of Bochner
or Pettis integrable functions, F is a space of bounded measurable functions, G is a Banach space
and the bilinear map is defined via an integral. We also consider vector valued sequence spaces.

Keywords: Weak compact, vector valued set functions, Bochner integral, Pettis integral, sequence
spaces.

In several recent papers abstract duality pairs or abstract triples have been introduced and used to establish
general results such as Orlicz-Pettis Theorems, Banach-Steinhaus Theorems, uniform boundedness and
uniform convergence results[3,4,16,14]. The results for abstract triples were then used to derive results for
locally convex spaces, operator spaces, function spaces and sequence spaces. In this note we derive weak
sequential compactness and weak sequential completeness results for abstract triples involving spaces
of vector valued set functions and spaces of bounded measurable functions and spaces of vector valued
integrable functions and vector valued sequence spaces.

We indicate the notation and assumptions which will be employed. Let E,F be (real) vector spaces
and G a topological vector space and assume that there is a bilinear map b : E×F → G . We call E,F,G
an abstract triple (abstract duality pair with respect to G) and denote it by (E,F : G). More general
abstract triples are considered in [3,4,16]. We write b(x, y) = x · y for x ∈ E, y ∈ F . The weakest topology
on E such that all of the linear maps x→ x · y from E into G are continuous for y ∈ F is denoted by
w(E,F ). We study sequential compactness and sequential completeness for this topology when E is a
space of vector valued, bounded, finitely additive set functions or the space of Bochner or Pettis integrable
functions, F is a space of bounded measurable functions, G is a Banach space and the bilinear map is
defined via an integral.

In what follows X will denote a Banach space and Σ a σ-algebra of subsets of a set S. We will require
some integration results for bounded, measurable functions with respect to bounded, finitely additive,
scalar set functions and bounded, finitely additive X-valued set functions.

First, assume ν : Σ → R is bounded and finitely additive. The variation of ν is denoted by |ν| [14]. If
f : S → R is a Σ simple function, f =

∑n
k=1 akχAk

, the integral of f with respect to ν is defined to be∫
A

fdν =
n∑
k=1

akν(Ak);

the integral is independent of the representation of F as a simple function. Note

(∗)
∣∣∣∣∫
A

fdν
∣∣∣∣ ≤ n∑

k=1
|ak| |ν(Ak ∩A)| ≤ ‖f‖∞ |ν| (A)

for A ∈ Σ, where ‖·‖∞ denotes the sup-norm. If f : S → R is bounded and Σ measurable and {fk} is a
sequence of simple functions converging uniformly to f , the integral of f with respect to ν is defined to be∫

A

fdν = lim
k

∫
A

fkdν;
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note {
∫
A
fkdν} is Cauchy by (*) so the limit exists, the integral is independent of the sequence {fk} and

the inequality (*) still holds for f .
Next, we define the integral of a scalar valued function with respect to a finitely additive, bounded set

function. Let m :
∑
→ X be finitely additive and bounded and let f : S → R be Σ measurable.

Definition 1. f is m integrable if for each x′ ∈ X ′, f is x′m integrable and for each A ∈ Σ there exists
xA ∈ X such that

∫
A
fdx′m = x′(xA). We write xA =

∫
A
fdm so x′(

∫
A
fdm) =

∫
A
fdx′m.

We define the semi-variation of m in order to obtain the analogue of (*) for the integral.

Definition 2. The semi-variation of m is defined by

‖m‖ (A) = sup{

∥∥∥∥∥
n∑
k=1

tkm(Ak)

∥∥∥∥∥ : |tk| ≤ 1, {Ak} ⊂ Σ a partition of A}.

Note that

‖m‖ (A) = sup{

∣∣∣∣∣
n∑
k=1

tkx
′m(Ak)

∣∣∣∣∣ : ‖x′‖ ≤ 1, |tk| ≤ 1, {Ak} ⊂ Σ a partition of A}

= sup{|x′m| (A) : ‖x′‖ ≤ 1}

and also
(∗∗) ‖m(A)‖ ≤ ‖m‖ (A) ≤ 4 sup{‖m(B)‖ : B ⊂ A,B ∈ Σ};

see [5] IV.10.4.

Proposition 3. Let f : S → R be bounded and Σ measurable. Then f is m integrable with

(#)
∥∥∥∥∫

A

fdm
∥∥∥∥ ≤ ‖f‖∞ ‖m‖ (A)

Proof. First assume that f is m integrable. Then∥∥∥∥∫
A

fdm
∥∥∥∥ = sup{

∣∣∣∣∫
A

fdx′m
∣∣∣∣ : ‖x′‖ ≤ 1} ≤ sup{

∫
A

|f | d |x′m| : ‖x′‖ ≤ 1}

≤ ‖f‖∞ sup{|x′m| (A) : ‖x′‖ ≤ 1} = ‖f‖∞ ‖m‖ (A).

so (#) holds.
Next pick a sequence of simple functions {gj} which converge uniformly to f . Clearly every simple

function is m integrable so (#) holds for simple functions. From (#),∥∥∥∥∫
A

gjdm−
∫
A

gkdm
∥∥∥∥ ≤ ‖gj − gk‖∞ ‖m‖ (A)

so {
∫
A
gkdm} is Cauchy. Let xA = lim

∫
A
gkdm. We claim xA =

∫
A
fdm. Let x′ ∈ X ′. Then

x′(xA) = lim x′
∫
A

gkdm =
∫
A

gkdx′m =
∫
A

fdx′m

justifying the claim. Thus, f is m integrable with (#) holding.

We establish a lemma which will be used in the sequel. Let B(Σ) be the space of all bounded, Σ
measurable functions with the sup-norm ‖·‖∞ and let ba(Σ,X) be the space of all bounded, finitely
additive m : Σ → X with the semi-variation norm, ‖m‖ = ‖m‖ (S).

Lemma 4. Suppose mk ∈ ba(Σ,X) and m(A) = limmk(A) exists for every A ∈ Σ. Then

(i) m ∈ ba(Σ,X) and
(ii) for every f ∈ B(Σ), lim

∫
A
fdmk =

∫
A
fdm.
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Proof. (i): That m is finitely additive is clear and m is bounded by the Nikodym Boundedness Theorem[6].
(ii): Let ε > 0. Pick g simple such that ‖f − g‖∞ ≤ ε and let

M = sup{‖mk(A)‖ : k ∈ N, A ∈ Σ};

note M < ∞ by the Nikodym Boundedness Theorem. Pick n such that
∥∥∫
A
gdmk −

∫
A
gdm

∥∥ ≤ ε for
k ≥ n (hypothesis). For k ≥ n, ∥∥∥∥∫

A

fdmk −
∫
A

fdm
∥∥∥∥

≤
∥∥∥∥∫

A

(f − g)dmk

∥∥∥∥+
∥∥∥∥∫

A

(f − g)dm
∥∥∥∥

+
∥∥∥∥∫

A

gdmk −
∫
A

gdm
∥∥∥∥

≤ ‖f − g‖∞ ‖mk‖ (A) + ‖f − g‖∞ ‖m‖ (A) + ε

≤ ε8M + ε

by (**).

Let S(Σ) be the subspace of B(Σ) consisting of the simple functions. Consider the abstract triple
(ba(Σ,X), S(Σ) : X) under the integration map (m, f)→

∫
S
fdm. The hypothesis of Lemma 4 asserts

that the sequence {mk} is
w(ba(Σ,X), S(Σ))

Cauchy. Now consider the abstract triple (ba(Σ,X), S(Σ) : X) under the integration map. The conclusion
of Lemma 4 is that there exists m ∈ ba(Σ,X) such that the sequence {mk} converges to m in the stronger
topology w(ba(Σ,X), B(Σ)). Thus, Lemma 4 can be viewed as a "Schur-type" result; i.e., in l1 a sequence
which is Cauchy in the weak topology actually is convergent in the norm topology[15].

We consider compactness results for spaces of vector valued set functions. A subset K of a topological
vector space E is relatively sequentially compact if every sequence {xk} ⊂ K has a subsequence {xnk

}
which converges to an element in E; K is conditionally sequentially compact if every sequence {xk} ⊂ K
has a subsequence {xnk

} which is Cauchy.
We first consider a boundedness result.

Proposition 5. Suppose K ⊂ ba(Σ,X) is w(ba(Σ,X), S(Σ)) conditionally sequentially compact. Then
K is norm bounded in ba(Σ,X).

Proof. {m(A) : m ∈ K,A ∈ Σ} is bounded iff {mk(Ak)} is bounded for every {mk} ⊂ K and every
pairwise disjoint sequence {Ak} ⊂ Σ[13]. By w(ba(Σ,X), S(Σ)) conditionally sequentially compactness
we may assume that limmk(A) exists for every A ∈ Σ. Then {mk(A)} is bounded for every A ∈ Σ and
{mk(Ak)} is bounded by the Nikodym Boundedness Theorem. K is norm bounded by (**).

Definition 6. A finitely additive set function m : Σ → X is strongly additive (strongly bounded) if the
series

∑∞
k=1 m(Ak) converges for every pairwise disjoint sequence {Ak} ⊂ Σ.

A strongly additive set function is bounded[6]. Let sba(Σ,X) be the space of all strongly bounded
elements of ba(Σ,X). A subset M ⊂ sba(Σ,X) is uniformly strongly additive if the series

∑∞
k=1 m(Ak)

converge uniformly for m ∈M and every pairwise disjoint sequence {Ak} ⊂ Σ.
Consider the abstract triple (sba(Σ,X), S(Σ) : X) under the integration map (m, f)→

∫
S
fdm.

Proposition 7. If K ⊂ sba(Σ,X) is w(sba(Σ,X), S(Σ)) conditionally sequentially compact , then

(I) K is uniformly strongly additive.
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Proof. If the conclusion fails, there exist mk ∈ K, {Ak} ⊂ Σ pairwise disjoint, an increasing sequence of
intervals, {Ik}, in N and ε > 0 such that

(&)

∥∥∥∥∥∥
∑
j∈Ik

mk(Aj)

∥∥∥∥∥∥ > ε.

By w(sba(Σ,X), S(Σ)) conditionally sequentially compactness we may assume limmk(A) = m(A)
exists for every A ∈ Σ. By the Nikodym Convergence Theorem[6], {mk} is uniformly strongly additive
contradicting (&).

Proposition 8. Suppose K ⊂ ba(Σ,X) is w(ba(Σ,X), B(Σ)) conditionally (relatively) sequentially
compact. Then for every f ∈ B(Σ),

(II) Kf = {
∫
S

fdm : m ∈ K} is ‖·‖ conditionally

(relatively) sequentially compact.

In particular, for every A ∈ Σ,

(III) KA = {m(A) : m ∈ K} is ‖·‖ conditionally
(relatively) sequentially compact.

Proof. The linear map from m→
∫
S
fdm from ba(Σ,X)→ X is

w(ba(Σ,X), B(Σ))− ‖·‖

sequentially continuous so the result follows.

Conditions (I),(II) and (III) give necessary conditions for w(sba(Σ,X), B(Σ)) relative sequential
compactness. We now consider sufficient conditions.

Theorem 9. Let K ⊂ sba(Σ,X). Assume that Σ is generated by a countable algebra A. Then conditions
(I) and (III) imply that K is w(sba(Σ,X), B(Σ)) relatively sequentially compact.

Proof. Let {mk} ⊂ sba(Σ,X). By (III) and the diagonalization method[7], there exists a subsequence {qk}
of {mk} such that ‖·‖− lim qk(A) = m(A) exists for every A ∈ A . We claim that ‖·‖− lim qk(A) = m(A)
exists for every A ∈ Σ. For this let

Σ1 = {A ∈
∑

: ‖·‖ − lim
k
qk(A) = m(A) exists}.

Then A ⊂ Σ1 and we claim that Σ1 is a monotone class. Suppose Bj ∈ Σ and Bj ↑ B. By defini-
tion of Σ1, ‖·‖ − limk qk(Bj) = m(Bj) exists for every j. Now Bj = B1 ∪ (∪j−1

i=1 (Bi+1 \ Bi)) so by (I),
‖·‖ − limj qk(Bj) = zk exists uniformly for k ∈ N. By the Iterated Limit Theorem[5],

limj limk qk(Bj) = limk limj qk(Bj) = limk zk(B) = limjm(Bj),

where all limits are with respect to the norm. Hence, B ∈ Σ1. A similar computation holds for decreasing
sequences from Σ1. Hence, Σ1 is a monotone class and the Monotone Class Theorem[14] implies that
Σ1 = Σ justifying the claim. By the Nikodym Convergence Theorem m ∈ sba(Σ,X). Now by Lemma 4

lim
∫
S

fdqk =
∫
S

fdm

holds for every f ∈ B(Σ) so qk → m in w(sba(Σ,X), B(Σ)).
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Corollary 10. Let K ⊂ sba(Σ,X). Assume that Σ is generated by a countable algebra A. Then K is
w(sba(Σ,X), B(Σ)) relatively sequentially compact iff (I) and (III) hold.

In the remarks below assume that Σ is generated by a countable algebra A.
The same proof shows that if K ⊂ ba(Σ,X) satisfies (I) and (III), then K is w(ba(Σ,X), B(Σ))

relatively sequentially compact. For if

‖·‖ − lim qk(A) = m(A)

exists for every A ∈ Σ, then m ∈ ba(Σ,X) by applying the Nikodym Boundedness Theorem in place of
the Nikodym Convergence Theorem.

Similarly, if ca(Σ,X) denotes the space of all countably additive members of sba(Σ,X) and K ⊂
ca(Σ,X), then K is w(ca(Σ,X), B(Σ)) relatively sequentially compact iff (I) and (III) hold. For the
limit of countably additive set function is countably additive by The Nikodym Convergence Theorem[5].

Let λ : Σ → [0,∞) be a measure and let ca(Σ,X : λ) be the elements of ca(Σ,X) which are absolutely
continuous with respect to λ. Then K is w(ca(Σ,X : λ), B(Σ)) is relatively sequentially compact iff (I)
and (III) hold. For if

‖·‖ − lim qk(A) = m(A)

exists for every A ∈ Σ, then m ∈ ca(Σ,X : λ) by the Vitali-Hahn-Saks Theorem[6].
It is worthwhile observing that the methods above imply the weak sequential completeness for the

topologies w(Y, Z) when Y = ba(Σ,X), sba(Σ,X), ca(Σ,X), ca(Σ,X : λ) and Z = S(Σ), B(Σ).
We next consider abstract triples of vector valued integrable functions. Let L1(λ,X) be the space of

Bochner λ integrable X valued functions[1,6] with the complete norm ‖f‖1 =
∫
S
‖f(s)‖ dλ and consider

the triples (L1(λ,X), S(Σ) : X) and (L1(λ,X), L∞(λ) : X) under the integration map (f, g)→
∫
S
gfdλ.

We establish the analogues of Propositions 7 and 8 for this triple.

Proposition 11. Let K ⊂ L1(λ,X) and suppose K is w(L1(λ,X), S(Σ)) conditionally sequentially
compact. Then {

∫
· fdλ : f ∈ K} is uniformly countably additive.

Proof. If the conclusion fails, there exist {fk} ⊂ K, {Ak} ⊂ Σ pairwise disjoint, an increasing sequence
of intervals {Ik} and ε > 0 such that

(∗)

∥∥∥∥∥
∫
∪j∈Ik

Aj

fkdλ

∥∥∥∥∥ > ε.

We may assume that limk

∫
A
fkdλ exists for every A ∈ Σ. The Nikodym Convergence Theorem asserts

that the measures {
∫
· fkdλ : f ∈ K} are uniformly countably additive. This contradicts (*).

Proposition 12. Let K ⊂ L1(λ,X) and suppose K is w(L1(λ,X), S(Σ)) conditionally sequentially
compact. Then for every A ∈ Σ, KA = {

∫
A
fdλ : f ∈ K} is ‖·‖conditionally sequentially compact. If K is

w(L1(λ,X), L∞(λ)) conditionally sequentially compact,then Kh = {
∫
S
hfdλ : f ∈ K} is ‖·‖conditionally

sequentially compact for every h ∈ L∞(λ).

Proof. The linear map H : L1(λ,X)→ X, f →
∫
S
hfdλ, is ω(L1(λ,X), L∞(λ)−X continuous. The result

follows.

The conclusions in Propositions 11 and 12 are necessary conditions for weak conditional sequential
compactness. As in Theorem 9 we consider sufficient conditions.

Theorem 13. Let K ⊂ L1(λ,X) be bounded. Assume that Σ is generated by a countable algebra A.
If {

∫
· fdλ : f ∈ K} is uniformly countably additive and Kh = {

∫
S
hfdλ : f ∈ K} is ‖·‖conditionally

sequentially compact for every h ∈ L∞(λ), then K is w(L1(λ,X), L∞(λ)) conditionally sequentially
compact. If X has the Radon-Nikodym property with respect to λ[6], then K is w(L1(λ,X), L∞(λ))
relatively sequentially compact.
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Proof. Let {fk} ⊂ K and set M = sup{‖fk‖1 : k}. As in the proof of Theorem 9 we may assume that
there exists a subsequence {gk} of {fk} such that lim

∫
A
gkdλ exists for every A ∈ Σ.

Now we claim that lim
∫
S
hgkdλ exists for every h ∈ L∞(λ). The linear maps Gk : L∞(λ) → X,

Gk(h) =
∫
S
hgkdλ, are continuous and uniformly bounded since ‖Gk(h)‖ ≤ ‖gk‖1 ‖h‖∞ ≤M ‖h‖∞. Now

lim
∫
S
hgkdλ exists for every simple function h and the simple functions are dense in L∞(λ) so lim

∫
S
hgkdλ

exists for every h ∈ L∞(λ) by the uniform boundedness of the {Gk}. Hence, K is w(L1(λ,X), L∞(λ))
conditionally sequentially compact.

Assume the Radon-Nikodym property. Set m(A) = lim
∫
A
gkdλ for A ∈ Σ. Then m is countably

additive by the Nikodym Convergence Theorem and we claim that m has bounded variation. Let
{Aj : j = 1, ..., n} ⊂ Σ be a partition of S. Then

n∑
j=1
‖m(Aj)‖ = lim

k

n∑
j=1

∥∥∥∥∫
A

gkdλ
∥∥∥∥ ≤ lim sup

k

n∑
j=1

∫
Aj

‖gk(s)‖dλ(s) ≤M

so the claim is justified. By the Radon-Nikodym property there exists g ∈ L1(λ,X) such that m(A) =∫
A
gdλ forA ∈ Σ. By what was established above gk → g in w(L1(λ,X), L∞(λ)) andK is w(L1(λ,X), L∞(λ))

relatively sequentially compact.

For the scalar version of these results for L1(λ), see [5].
Next, we consider abstract triples involving the Pettis integral. A function f : S → X is Pettis

integrable with respect to λ if the function x′f is λ integrable for every x′ ∈ X ′ and for every A ∈ Σ there
exists xA ∈ X such that

∫
A
x′fdλ = x′(xA); xA is called the Pettis integral of f and is denoted by

∫
A
fdλ.

For the properties of the Pettis integral see [6,11]. In particular, the indefinite integral of a Pettis integrable
function is countably additive. Let P (λ,X) be the space of Pettis integrable functions; this space has two
equivalent norms, ‖f‖P = sup{

∣∣∫
S
|x′f |dλ

∣∣ : ‖x′‖ ≤ 1} and ‖f‖′P = sup{
∥∥∫
A
fdλ

∥∥ : A ∈ Σ} which in
general are not complete. Consider the abstract triples (P (λ,X), S(Σ) : X) ,(P (λ,X), B(Σ) : X) under
the integral map (f, g)→

∫
S
gfdλ[6] for the existence of the integral ). The analogue of Proposition 11

for this triple is established as in the case of the Bochner integral above.

Proposition 14. Let K ⊂ P (λ,X) and suppose K is w(P (λ,X), S(Σ)) conditionally sequentially
compact. Then {

∫
· fdλ : f ∈ K} is uniformly countably additive.

Proposition 15. Let K ⊂ P (λ,X) and suppose K is w(P (λ,X), S(Σ)) conditionally sequentially
compact. Then for every A ∈ Σ, KA = {

∫
A
fdλ : f ∈ K} is ‖·‖conditionally sequentially compact. If K

is w(P (λ,X), B(Σ)) conditionally sequentially compact,then Kh = {
∫
S
hfdλ : f ∈ K} is ‖·‖conditionally

sequentially compact for every h ∈ B(Σ).

Proof. The linear map H : P (λ,X)→ X, f →
∫
S
hfdλ, is ω(P (λ,X), B(Σ))−X continuous. The result

follows.

The conclusions in Propositions 14 and 15 are necessary conditions for weak conditional sequential
compactness. As in Theorem 13 we consider sufficient conditions.

Theorem 16. Let K ⊂ P (λ,X). Assume that Σ is generated by a countable algebra A. If {
∫
· fdλ : f ∈ K}

is uniformly countably additive and Kh = {
∫
S
hfdλ : f ∈ K} is ‖·‖conditionally sequentially compact for

every h ∈ B(Σ), then K is w(P (λ,X), B(Σ)) conditionally sequentially compact.

Proof. Let {fk} ⊂ K. As in the proof of Theorem 9 we may assume that there exists a subsequence {gk}
of {fk} such that lim

∫
A
gkdλ exists for every A ∈ Σ.

Now we claim that lim
∫
S
hgkdλ exists for every h ∈ B(Σ). Since Kh = {

∫
S
hfdλ : f ∈ K} is

‖·‖ conditionally sequentially compact, every subsequence of {gk} has a subsequence {gnk
} such that

lim
∫
S
hgnk

dλ exists. Since X is complete, lim
∫
S
hgkdλ exists. Thus, K is w(P (λ,X), B(Σ)) conditionally

sequentially compact.

In the proof of Theorem 16 we have that lim
∫
A
gkdλ = m(A) exists for every A ∈ Σ, but a lack of

Radon-Nikodym Theorems for the Pettis integral means that we do not have a Pettis integrable function
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g such that
∫
· gdλ = m(·)[11]. This is the reason for the condition sequential compactness statement

instead of a relative sequential compactness statement in the theorem.
Results similar to those above can also be established for the space of Dunford integrable functions[6,11]

for this integral).
We consider triples involving vector valued sequence spaces and their β duals. Let E be a vector space

of X valued sequences which contains the space c00(X) of sequences which are eventually 0. Let Y be
a Banach space and L(X,Y ) the space of continuous linear operators from X into Y with the strong
operator topology τ . The β dual of E with respect to Y is defined to be

EβY = {{Tj} ⊂ L(X,Y ) :
∞∑
j=1

Tjxj converges for every x = {xj} ∈ E}.

We write T · x =
∑∞
j=1 Tjxj when T = {Tj} ∈ EβY and x = {xj} ∈ E. Consider the triple (EβY , E : Y )

under the bilinear map (T, x)→ T · x.
We consider the analogues of Propositions 7 and 8 for this triple.

Proposition 17. Suppose K ⊂ EβY is w(EβY , E) relatively sequentially compact. Then for every j,

(a) {Tj : T = {Tk} ∈ K} is τ relatively sequentially compact.

Proof. The linear map Gj : EβY → L(X,Y ), T → Tj , is w(EβY , E) − τ continuous so the result
follows.

The space E has the signed weak gliding hump property (signed-WGHP) if for every x = {xj} ∈ E
and every increasing sequence of intervals {Ij} there exists a subsequence {nj} and a sequence of signs
{sj} such that the coordinate sum of the series

∑∞
j=1 sjχInj

xj ∈ E, where χI is the chacteristic function
of I and χIx is the coordinate product of χI and x. See [15] Appendix C for examples of spaces with
signed-WGHP; for example, lp(X), c0(X) have signed-WGHP. From Corollary 4 of [12] or Theorem 2.26
of [15], we have

Proposition 18. Assume E has signed-WGHP and K ⊂ EβY is w(EβY , E) relatively sequentially
compact. Then for every x ∈ E the series

(b)
∞∑
j=1

Tjxj converge uniformly in Y for T ∈ K.

Conditions (a) and (b) are necessary conditions for relative sequential compactness. We now show
that they are sufficient as in Theorem 9.

Theorem 19. Let K ⊂ EβY satisfy conditions (a) and (b). Then K is w(EβY , E) relatively sequentially
compact.

Proof. Let {T k} ∈ K. By (a) and the diagonalization method[7], there exists a subsquence {Tnk} such
that τ − limk T

nk
j = Tj ∈ L(X,Y ) for every j. Let U be a closed neighborhood of 0 in Y and x ∈ E.

By (b). there exists N such that
∑p
j=n T

nk
j xj ∈ U for p > n ≥ N , k ∈ N. Then

∑p
j=n Tjxj ∈ U for

p > n ≥ N so the series
∑∈
j=1 Tjxj converges or T = {Tj} ∈ EβY . Now

(&) (Tnk − T ) · x =
M∑
j=1

(Tnk
j − Tj)xj +

∞∑
j=M+1

(Tnk
j − Tj)xj .

There exists M such that the term on the right hand side of (&) will belong to U for every k by (b). With
this M fixed the first term on the right hand side of (&) will belong to U for large k. Hence, Tnk → T
with respect to τ and K is w(EβY , E) relatively sequentially compact.

Note that the proof above also shows that w(EβY , E) is sequentially complete when E has signed-
WGHP and X,Y are Banach spaces[15].
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