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Abstract A non-Euclidean analog of the generalized Darboux equation is considered. For the
case where its solutions are radial functions of the second variable we obtain an uniqueness result
(Theorem 1), which deals with zero sets of these solutions. The example of the function in Theorem 2
of the paper shows that Theorem 1 cannot be essentially reinforced.
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1 Introduction and Statement of Main Results

Let L be the Laplace-Beltrami operator on a Riemannian manifold X (see, for instance, [1, Ch. 2]). The
partial differential equation

Lx
(
f(x, y)

)
= Ly

(
f(x, y)

)
(1)

with f = f(x, y) ∈ C2(X × X) is called the generalizing Darboux equation. Such equations are of
considerable interest in their own right, but they are also important for many applications in geometric
analysis (see [1], [2]) and integral geometry (see [3]–[5]). In particular, equations of type (1) are closely
connected with the mean value operators on symmetric spaces (see [1]–[3], [5]).

In this paper, we investigate zero sets of solutions of the generalized Darboux equation for the case
where X is the real hyperbolic space.

We take X as the ball B = {x ∈ Rn : |x| < 1} with the Riemannian structure

ds2 = dx2
1 + · · ·+ dx2

n

(1− |x|2)2 . (2)

The Laplace-Beltrami operator for (2) is given by

L =
(
1− |x|2

)n n∑
j=1

∂

∂xj

((
1− |x|2

)2−n ∂

∂xj

)
.

Thus equation (1) has the form

(
1− |x|2

)n n∑
j=1

∂

∂xj

((
1− |x|2

)2−n ∂

∂xj

)
f =

=
(
1− |y|2

)n n∑
j=1

∂

∂yj

((
1− |y|2

)2−n ∂

∂yj

)
f, (3)

where f = f(x, y) ∈ C2(B ×B).
For R ∈ (0, 1) and r ∈ [0, R) we set

Mr,R,1 = {(x, y) ∈ B ×B : r ≤ |x| ≤ R, |y| ≤ th (arth |x| − arth r)},

Mr,R,2 = {(x, y) ∈ B ×B : R ≤ |x| ≤ th (2 arthR− arth r),
|y| ≤ th (2 arthR− arth r − arth |x|)}.

Let SO(n) be the rotation group of Rn.
The main results of this paper are as follow.
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Theorem 1 Let f ∈ C2(B × B) satisfy (3). Suppose that R ∈ (0, 1) and r ∈ [0, R) are given, and the
following conditions hold.
(i) f(x, y) = f(x, ky) for all x, y ∈ B, k ∈ SO(n).
(ii) f(x, 0) = 0 if r ≤ |x| ≤ R.
(iii) f(x, y) = 0 for all x, y ∈ B, |x| = R.
Then f = 0 in Mr,R,1 ∪Mr,R,2. Moreover, if r = 0 then f = 0 in B.

We need to say a word about condition (i). It is a well-known fact that if f(x, y) is a radial function
of y and

f(x, y) = h(x, t), t = arth |y|,

then equation (3) can be rewritten as

(
1− |x|2

)n n∑
j=1

∂

∂xj

((
1− |x|2

)2−n ∂

∂xj

)
h = ∂2h

∂t2
+ 2(n− 1)cth 2t ∂h

∂t
.

This relation is a hyperbolic analog of the Darboux equation. Some Euclidean analogs of Theorem 1 can
be found in [4] and [6].

The following result shows that Theorem 1 cannot be essentially improved.

Theorem 2 Suppose that R ∈ (0, 1) and ε ∈ (0, R) are given. Then there exists a nonzero solution
f ∈ C2(B ×B) of equation (3) such that

f(x, 0) = 0 in {x ∈ B : |x| ≤ R− ε} (4)

and conditions (i) and (iii) in Theorem 1 hold.
For more results on the theory of differential equations on symmetric spaces and their applications,

see [2].

2 Basic Notation

In the paper, we use the following standard notations: R, N, Z, and Z+ denote the sets of real, natural,
integer and non-negative integers, respectively; Γ is the gamma-function; F (a, b; c; z) is the Gauss
hypergeometric function.

The Möbius groupM(B) acts transitively on B by conformal mappings (see, for example, [4, Part 2,
Ch. 2]). The Möbius transformations are motions in Poincaré’s model of the real hyperbolic space realized
on the ball B. The hyperbolic metric d on this space is defined by the equality

d(0, x) = 1
2 ln 1 + |x|

1− |x| , x ∈ B, (5)

and the condition of invariance under the groupM(B). Relation (5) shows that

|x| = th d(0, x), x ∈ B.

The Riemannian measure dµ on B has the form

dµ(x) = dx
(1− |x|2)n .

We recall that dµ is invariant underM(B).
For R > 0, we denote by the symbol BR(y) an open ball with radius R centered at y ∈ B, i.e.,

BR(y) = {x ∈ B : d(x, y) < R}.

We set BR = BR(0) and SR(y) = {x ∈ B : d(x, y) = R}. Furthermore, let χR be the characteristic
function (the indicator) of the ball BR.
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We need the following classes of functions and distributions on B: L(B) and Lloc(B) are the classes of
functions integrable and locally integrable on B with respect to the measure dµ; D′(B) and E ′(B) are
the spaces of distributions and compactly supported distributions on B, respectively; D(B) is the space
of compactly supported functions infinite differentiable in B.

Let T be a distribution with compact support in R. Its Fourier transform is defined by the relation

T̂ (z) = 〈T, e−izt〉, z ∈ C.

For a distribution f , f denotes its complex conjugation, supp f stands for the support of f . The symbol
× denotes the convolution of distributions on B in the cases where it exists (see [1, Ch. 2, § 5]). For the
convolution of distributions on R, we use the usual symbol "∗".

Let Sn−1 = {x ∈ Rn : |x| = 1}, let ωn−1 be the area of the sphere Sn−1, let ρ and σ be the polar
coordinates of the point x ∈ Rn (ρ = |x|. If x 6= 0, then σ = x/ρ ∈ Sn−1).

Let Hk be the space of spherical harmonics of degree k on Sn−1, regarded as a subspace of L2(Sn−1)
(see [4, Part 1, Ch. 5]), let ak be the dimension of Hk, and let

{
Y

(k)
j

}
1 ≤ j ≤ ak, be an orthonormal

basis in Hk. To every function f ∈ Lloc(BR) we assign its Fourier series

f(x) ∼
∞∑
k=0

ak∑
j=1

fk,j(ρ)Y (k)
j (σ), 0 < ρ < thR,

where
fk,j(ρ) =

∫
Sn−1

f(ρσ)Y (k)
j (σ) dσ.

We set
fk,j(x) = fk,j(ρ)Y (k)

j (σ).

Let O(n) be the orthogonal group of Rn with the normalized Haar measure dτ , let T k(τ) be the
restriction of the quasi-regular representation of O(n) to the space Hk (see [7, Part 2, Ch. 9]), let{
tkj,p
}

(1 ≤ j, p ≤ ak) be the matrix of the representation T k(τ), that is

(
T k(τ)Y (k)

j

)
(σ) = Y

(k)
j (τ−1σ) =

ak∑
p=1

tkj,p(τ)Y (k)
p (σ)

for any τ ∈ O(n) and σ ∈ Sn−1. Then one has

fk,j(x) = ak

∫
O(n)

f(τ−1x) tkj,j(τ) dτ (6)

(ñì. [7, Part 2, Ch. 9, formula (9.5)]). Next, for each f ∈ D′(BR) we define the distribution fk,j ∈ D′(BR)
by the formula

〈fk,j , g〉 =
〈
f, ak

∫
O(n)

g(τ−1x) tkj,j(τ) dτ
〉
, g ∈ D(BR).

For a set M(BR) ⊂ D′(BR) let

Mk,j(BR) = {f ∈M(BR) : f = fk,j}, M\(BR) = M0,1(BR).

3 The Functions Φλ,k,j

For the rest of the paper, λ ∈ C and

ν = ν(λ) = 1
2 (iλ+ n− 1).

274 Advances in Analysis, Vol. 2, No. 4, October 2017

AAN Copyright © 2017 Isaac Scientific Publishing



For k ∈ Z+, j ∈ {1, . . . , ak} and x ∈ B\{0} we put

Φλ,k,j(x) = Φλ,k(ρ)Y (k)
j (σ),

where

Φλ,k(ρ) =
Γ (ν + k)Γ

(
n
2
)

Γ (ν)Γ
(
n
2 + k

) ρk (1− ρ2)ν F(ν + k, ν + 1− n

2 ; n2 + k; ρ2
)
. (7)

For any m ∈ Z we consider the differential operator dm defined on C1(0, 1) as follows:

(
dmf

)
(t) = tm

(1− t2)m−1
d
dt

((1
t
− t
)m

f(t)
)
, f ∈ C1(0, 1).

Let Lk = L − 4(k − 1)(n+ k − 2)I, where I is the identity operator. A simple calculation shows that(
Lkf

)
(x) = (dk−1d2−k−nu)(ρ)Y (k)

j (σ) (8)

if f ∈ C2(BR) has the form f(x) = u(ρ)Y (k)
j (σ).

Using (7) and [8, formulae 2.8 (25), 2.8 (26))] we easily obtain(
dkΦλ,k

)
(ρ) = (iλ− 2k − n+ 1)Φλ,k+1(ρ), (9)(

d1−k−nΦλ,k+1
)
(ρ) = (iλ+ 2k + n− 1)Φλ,k(ρ). (10)

In what follows we assume that all functions that are defined and continuous in a punctured neigh-
bourhood of zero in Rn and admit continuous extension to 0 are defined at 0 by continuity. The functions
Φλ,k,j admit continuous extension to the point x = 0, becoming real-analytic functions on B. Formulae (8),
(9) and (10) imply that (

L+ (λ2 + (n− 1)2)I
)(
Φλ,k,j

)
= 0. (11)

In addition, the equality

Φλ,k,j(x) = 1
ωn−1

∫
Sn−1

(
1− |x|2

|x− η|2

)ν
Y

(k)
j (η) dη (12)

holds for all λ ∈ C and x ∈ B (see [4, Part 2, Ch. 2, formula (2.9)]). Since

1− |x|2

|x− η|2
≤ 1 + |x|

1− |x| , x ∈ B, η ∈ Sn−1,

it follows from (12) that

max
x∈Br

∣∣∣∣ ∂α1

∂xα1
1
. . .

∂αn

∂xαn
n
Φλ,k,j(x)

∣∣∣∣ = O
(

(1 + |λ|)α1+···+αn er|Imλ|
)

(13)

for r ∈ (0, 1) and α1, . . . , αn ∈ Z+, where the constant in O does not depend on λ.

Lemma 1 Let λ, µ ∈ C, R ∈ (0, 1). Then

(λ2 − µ2)
∫ R

0

tn−1

(1− t2)n Φλ,k(t)Φµ,k(t) dt =

= Rn−1

(1−R2)n−1

(
Φλ,k(R)Φ′µ,k(R)− Φµ,k(R)Φ′λ,k(R)

)
.

(14)
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Proof. Putting α = n−2
2 + k, we get

Φλ,k(t) =
Γ (ν + k)Γ

(
n
2
)

Γ (ν)Γ
(
n
2 + k

) tk (1− t2)−k ϕλ,α(arth t), (15)

where
ϕλ,α(ξ) = F

(
α+ 1 + iλ

2 , α+ 1− iλ
2 ; α+ 1; −sh2 t

)
(16)

(see (7) and [8, Ch. 2.9]). Using now [7, formulae (7.18) and (7.46)] one has

(λ2 − µ2)
∫ t

0
∆α(ξ)ϕµ,α(ξ)ϕλ,α(ξ) dξ =

= ∆α(t)
(
ϕλ,α(t)ϕ′µ,α(t)− ϕµ,α(t)ϕ′λ,α(t)

)
,

where

∆α(t) =
(

sin 2it
2i

)2α+1
.

This together with (15) implies (14).
Equality (15) implies that for all k ∈ Z+, R ∈ (0, 1) the function Φλ,k(R) is an even entire function of

λ. Using [7, Proposition 7.4] we see from Hadamard’s theorem [9, Ch. 1, Theorem 13] that Φλ,k(R) has
infinitely many zeros.

Lemma 2 All the zeros of Φλ,k(R) are real, simple, and the set of these zeros is symmetric with respect
to λ = 0. In addition Φλ,k(R) > 0 for iλ ∈ R.

Proof. It follows from (15), (16), and the expansion of F in a hypergeometric series (see [8, Ch. 2, § 2.1,
formula (1)]) that Φλ,k(R) > 0 for iλ ∈ R. Next, let Φλ,k(R) = 0 for some λ ∈ C. We claim that λ ∈ R
and d

dt Φt,k(R)
∣∣∣
t=λ
6= 0. Assume that λ 6∈ R; then λ2 6= λ

2, since iλ 6∈ R. Putting µ = λ in (14) and taking
into account that Φλ,k(R) = 0, we infer that∫ R

0

tn−1

(1− t2)n
∣∣Φλ,k(t)

∣∣2 dt = 0, (17)

which is impossible. Now assume that d
dt Φt,k(R)

∣∣∣
t=λ

= 0. Letting µ→ λ in (14) we obtain (17) once again.
Hence, all the zeros of Φλ,k(R) are real and simple. Since the function Φλ,k(R) is even, this completes the
proof of the lemma.

Let Nk(R) be the set of positive zeros λ of the function Φλ,k(R). Lemma 2 shows that Nk(R) has
the form Nk(r) = {λ1, λ2, . . .}, where λm = λm(R, k) is the sequence of all positive zeros of Φλ,k(R)
numbered in the ascending order. Owing to [9, Ch. 1, Theorem 6], we have

∞∑
m=1

λ−1−ε
m <∞

for any ε > 0.

Lemma 3 Let λ ∈ Nk(R) and

I(λ) =
∫ R

0

tn−1

(1− t2)n |Φλ,k(t)|2 dt.

Then I(λ) > Cλ−n−2, where C > 0 does not depend on λ.
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Proof. Because of (16), for t > 0 one has

ϕλ,α(t) = Γ (α+ 1) (sh2t)2α

Γ (α+ 1
2 ) 2α− 3

2
·

·
∫ t

0
(ch 2t− ch 2ξ)α− 1

2F

(
2α, 0;α+ 1

2; ch t− ch ξ
2 ch t

)
cosλξ dξ

(see [10, equality (2.21)]). Using now (15) and repeating the arguments in [4, Part 2, the proof of
Lemma 2.7] we arrive at the desired statement.

Formula (11) with k = 0 implies that Φλ,0(|x|) coincides with the elementary spherical function ϕλ on
B (see [8, Ch. 4, §4.2]). The spherical transform f̃(λ) of a distribution f ∈ E ′\(B) is defined by

f̃(λ) = 〈f, ϕλ〉. (18)

By (18) and (11) we conclude that

L̃mf(λ) = (−1)m(λ2 + (n− 1)2)mf̃(λ), m ∈ Z+.

This together with (13) shows that for f ∈ (E ′\ ∩ C2m)(B)

f̃(λ) = O
(
|λ|−2m), λ→∞, λ ∈ R, (19)

where the constant of the symbol O is independent of λ.

Lemma 4 Let T ∈ E ′\(B), f ∈ C2(B) and Lf = −(λ2 + (n− 1)2)f . Then

(f × T )(x) = T̃ (λ)f(x), x ∈ B. (20)

In particular,

(Φλ,k,j × χr)(x) = ωn−1

(
sh2r

2

)n−1
Φλ,1(thr)

ν
Φλ,k,j(x) (21)

for any r > 0.

Proof. The first equality follows from the mean value theorem for the eigenfunctions of the operator L
(see [8, Ch. 4, § 2.2]). Next one has

χr(λ) =
∫
Br

Φλ,0(|x|)dµ(x) = ωn−1

∫ thr

0

ρn−1Φλ,0(ρ)
(1− ρ2)n dρ.

Combining this with (10), we obtain

χ̃r(λ) = ωn−1

(
sh2r

2

)n−1
Φλ,1(thr)

ν
.

Thus the second equality in the lemma follows from the first with T = χr.

4 Linear Homeomorphisms Ak,j

In this section we define an operator allowing the reduction of several problems for convolution in B to
the one-dimensional case.

For f ∈ Lloc(B), ζ ∈ B \ {0}, x ∈ B \ {0} we set

Kζ(f)(x) = 1
ωn−1

(
1− |x|2

|x|

)n−1

(f × χarth |x|)(ζ)Y
(1)

1

(
x

|x|

)
. (22)
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Lemma 5 Let f , fn ∈ Lloc(B), n ∈ N, and assume that fn → f in the space L(E) for each compact set
E ⊂ B. Then for each ζ ∈ B \ {0} the sequence {Kζ(fn)} converges to Kζ(f) in D′(B).

Proof. Let ϕ ∈ D(B), suppϕ ⊂ Ba and let

ψ(x) = 1
ωn−1

(
1− |x|2

|x|

)n−1

ϕ(x)Y (1)
1

(
x

|x|

)
.

Using (22) we obtain ∣∣〈Kζ(fn), ϕ〉 − 〈Kζ(f), ϕ〉
∣∣ ≤

≤ sup
x∈Ba

∫
Bd(0,x)(ζ)

|fn − f |dµ
∫
Ba

|ψ|dµ ≤

≤
∫
Ba(ζ)

|fn − f |dµ
∫
Ba

|ψ|dµ.

Since fn → f in L(Ba(ζ)) this implies the desired result.

Lemma 6 Let t > 0 and k ∈ Z+. Then there exists St,k ∈ E ′(R) such that suppSt,k ⊂ [−t, t] and

Ŝt,k(λ) = √ωn−1
Γ (ν)

Γ (ν + k) Φλ,k(th t), λ ∈ C. (23)

Proof. As already pointed out in § 3, for each t > 0 the function Γ (ν)
Γ (ν+k) Φλ,k(th t) is an even entire

function of λ. Moreover, it follows from (13) that

|Φλ,k(th t)| ≤ c et|Imλ|, (24)

where the constant c > 0 does not depend on λ. Now the Paley-Wiener theorem (see [11, Theorem 7.3.1])
completes the proof.

Lemma 7 Let a > 0. There exists a linear homeomorphism Ak,j : D′k,j(Ba)→ D′\(−a, a) such that the
following assertions hold.
(i) For each λ ∈ C,

Ak,j(Φλ,k,j)(t) =
Γ (ν + k)Γ

(
n
2
)

Γ (ν)Γ
(
n
2 + k

) cosλt. (25)

(ii) If f ∈ Lloc
k,j(Ba), t ∈ (0, a), and ζ ∈ St, then

n
√
ωn−1 A1,1

(
Kζ(f)

)
=
Γ
(
n
2 + k

)
Γ
(
n
2
) Y

(k)
j

(
ζ

|ζ|

)(
Ak,j(f) ∗St,k

)
(26)

in D′(t− a, a− t).

Proof. According to [7, Theorem 10.21], there exists a linear homeomorphism Ak,j : D′k,j(Ba)→ D′\(−a, a)
satisfying (25). Let us prove (26). First of all, we note that the set Lin {Φλ,k,j , λ ∈ C} is a dense subset
of D′k,j(Ba) (see [7, Proposition 9.9]). Therefore, without loss of generality we can assume that f = Φλ,k,j ,
λ ∈ C (see Lemma 5). Next one has

n
√
ωn−1 A1,1

(
Kζ(Φλ,k,j)

)
(ξ) = Φλ,k,j(ζ) cosλξ (27)

(see (21) and (22)). On the other hand,

Γ
(
n
2 + k

)
Γ
(
n
2
) (

Ak,j(Φλ,k,j) ∗St,k

)
(ξ) = √ωn−1 Φλ,k(ζ) cosλξ (28)

because of (25) and (23). Comparing (27) with (28) we arrive at (26).
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5 Proof of Theorem 1

We now proceed to the proof of Theorem 1. Let f ∈ C2(B ×B) and suppose that this function satisfies
conditions (i)–(iii) in Theorem 1. For each t ∈ (0, 1), Asgeirsson’s mean value theorem (see [1, Ch. 2,
§ 5.6, Theorem 5.28]) yields∫

St(x)
f(ζ, 0) dω(ζ) =

∫
St(0)

f(x, ζ) dω(ζ), x ∈ B,

where dω is the surface element on St(x). This equality and condition (i) in Theorem 1 show that

f(x, y) = 1
ωn−1 (sh t ch t)n−1

∫
St(x)

f(ζ, 0) dω(ζ) (29)

for all x ∈ B, y ∈ St(0). Let R′ = arthR, a = 2R′ − arth r. Now define u(x) = f(x, 0) for r ≤ |x| < a and
u(x) = 0 for |x| < r. Relation (6) and property (ii) imply that

uk,j(x) = 0 in BR′ (30)

for all k ∈ Z+, j ∈ {1, . . . , ak}. In addition, by property (iii) and (29),

(uk,j × χt)(ζ) = 0, ζ ∈ SR′(0),

for each t ∈ (0, R′ − arth r). Hence

Ak,j(uk,j) ∗SR′,k = 0 in (R′ − a, a−R′)

because of Lemma 7. Using now Lemma 3 and [4, Part 3, Theorem 1.3] we see that

Ak,j(uk,j)(t) =
∑

λ∈Nk(R)

cλ,k,j cosλt, (31)

where cλ,k,j ∈ C,
cλ,k,j = O(λγ), λ→∞ (32)

for some γ > 0, and the series in (31) converges in the space D′(−a, a). Owing to (25), this means that

uk,j(x) =
∑

λ∈Nk(R)

cλ,k,j Φλ,k,j(x), (33)

where the series converges in D′(Ba). Let ϕε ∈ D\(B) and suppϕε ⊂ Bε, ε ∈ (0, a). In view of Lemma 4,
we conclude from (33) that

(uk,j × ϕε)(x) =
∑

λ∈Nk(R)

cλ,k,j ϕ̃ε(λ)Φλ,k,j(x), x ∈ Ba−ε. (34)

Together with (32), relation (19) yields

cλ,k,j ϕ̃ε(λ) = O

(
1
λb

)
, λ→∞

for each b > 0. Taking (24) into account we see that the series in (34) converges uniformly on compacts.
Therefore, we obtain

cλ,k,j ϕ̃ε(λ) =
(∫

BR′

|Φλ,k,j(x)|2 dµ(x)
)−1 ∫

BR′

(uk,j × ϕε)(x)Φλ,k,j(x) dµ(x)

(see Lemma 1). Letting ε→ 0, for a suitable sequence {ϕε} one has

cλ,k,j =
(∫

BR′

|Φλ,k,j(x)|2 dµ(x)
)−1 ∫

BR′

uk,j(x)Φλ,k,j(x) dµ(x).

Hence cλ,k,j = 0 for all λ, k, j because of (30). Now we know that the functions uk,j and u vanish in Ba.
In view of (29) this gives us the assertion of Theorem 1.
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6 Proof of Theorem 2

Owing to [4, the proof of Theorem 2.2.6 (5)], there exists a nonzero function u ∈ C∞(B) such that
u(x) = 0 for |x| ≤ R− ε and

u(x) =
∑

λ∈N1(r)

cλ Φλ,1,1(x), (35)

where cλ ∈ C and the series in (35) converges in the space C∞(B). For x ∈ B, y ∈ B\{0} we define

f(x, y) = 1
ωn−1 (sh t ch t)n−1

∫
SR(x)

u(ζ) dω(ζ), (36)

where R = |y|. In addition, we set f(x, 0) = u(x), x ∈ B. Then f ∈ C2(B × B) and (3) are satisfied
because of [1, Ch. 2, Proposition 4.12]. Next, by the definition of u, relation (4) holds. Finally, in view
of (36) and (20), conditions (i) and (iii) in Theorem 1 are satisfied for the function f .
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