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1   Introduction 

Monographs [1 - 4] reveal the following effects of the principal significance: 
1. The birth of the universe is convoying of appearance of the repulsion forces. In the existing 

terminology - we discover the “negative pressure” and “dark energy” in all cases. This fundamental 
result does not depend on the mechanism of external perturbations. In other words, the anti-gravity in 
the physical vacuum exists, if there is dissipation of energy or in the absence of dissipation at all.  

2. Physical Vacuum (PV) is not a speculative object; it is a reality as “matter” and “fields”. In other 
words, the physical vacuum is "the third" physical reality along with matter and fields. In this case, it is 
natural to raise the question about the existence of the effect which is similar to the Hubble’s effect. As 
installing the appearance of this effect in the physical vacuum does not contradict the conclusions of 
non-local physics. 

3. In the article [5] we investigated in the frame of non-local physics the connection between from the 
first glance different effects like Physical Vacuum and PV boxes, clear air turbulence (CAT), the 
Shawyer EM-drive (PV-engines), Special Theory of Relativity. In the article [6] the wave processes in 
PV were investigated.  

4. We intend to find the solutions of the transport equations defining the evolution the physical 
vacuum (PV). It means: 

A) If the matter is absent, non-local evolution equations have nevertheless non-trivial solutions 
corresponding evolution of PV which description in time and 3D space on the level of quantum 
hydrodynamics demands only quantum pressure p , the self-consistent force F  (acting on unit of the 
space volume) and velocity 0v . The system of non local equations is written for the case when the usual 
matter is absent ( ρ = 0 ), also radiation, gravitation (as well as other mass forces) and electromagnetic 
fields are absent. No reason to speak about special or general relativity in this situation, because these 
theories don’t work in the described conditions, (see in particular Items 5 and 6). 

B) In all other cases we consider from the position of the nonlocal physics the interaction of Physical 
Vacuum with the external electromagnetic and gravitational fields taking into account the possible 
technical applications like EM-engine. 

C) Formally speaking the Newtonian gravity propagates with the infinite speed. This conclusion is 
connected only with the description in the frame of local physics. Usual affirmation - general relativity 
(GR) reduces to Newtonian gravity in the weak-field, low-velocity limit. In literature you can find 
criticism of this affirmation because the conservation of angular momentum is implicit in the 
assumptions on which GR rests. Finite propagation speeds and conservation of angular momentum are 
incompatible in GR. Therefore, phenomenological GR was forced to claim that gravity is not a force 
that propagates in any classical sense. But here I do not intend to join to this widely discussed topic 
using only unified non-local model. The self-consistent description of PV with electromagnetic and 
gravitational fields originated by PV is the topic of other investigations. 
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In the following the nonlocal physics is applied for description of interaction of PV with the external 
gravitational and electromagnetic fields. All results are obtained from the first principles of physics. 

2   The Basic System of Nonlocal Hydrodynamic Equations 

In monographs [1-4] the evolution of Physical Vacuum (PV) in Planck epoch and wave effects in PV are 
considered in the frame of nonlocal physics. It should be underlined that the nonlocal transport 
equations are obtained from the first principles of physics. Here we intend to find the solutions of PV 
equations for a physical system containing PV and electromagnetic and gravitational fields. 

During all investigations we needn’t to use the theory Newtonian gravitation or the Maxwell 
equations in explicit forms for solution of nonlinear non-local evolution equations. In contrast with the 
local physics this approach in the frame of quantum non-local hydrodynamics leads to the closed 
mathematical description for the physical system under consideration. If the matter is absent, non-local 
evolution equations have nevertheless non-trivial solutions corresponding to evolution of PV whose 
description in time and 3D space on the level of quantum hydrodynamics demands only quantum 
pressure p , the self-consistent force F  (acting on unit of the space volume) and velocity 0v . 

Moreover, it could be said that we are living in physical vacuum in its form remaining after PV burst 
(Big Bang) and creation of fields and matter in the following PV evolution. In the frame of nonlocal 
description it leads to the system of equations [1-4]: 
(continuity equation) 

 ( ) ( ) ( )∂ ∂ρ ∂ ∂ ∂ ∂ ∂ρ τ ρ ρ τ ρ ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂
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(continuity equation, 1D case; u - velocity in the x  - direction) 
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(momentum equation) 

 

( ) ( )

( ) ( ) ( )

( )

∂ ∂ ∂ ∂ ∂ρ ∂ρ τ ρ ρ ρ τ ρ
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ρ ρ
∂ ∂ ∂ ∂ρ τ
∂ ∂

∂

       − + ⋅ + − − − + ⋅     
       

   
+ + ⋅ + ⋅      + ⋅ + − =   + ⋅ − −    

� �
�

�

0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0

I 2I
I 0

I

p
t t t

p p
tp

p

v v v v F g v
r r r

v v v v v v
r rv v

r
v Fv v F

r

  (2.3) 

(momentum equation, 1D case) 
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(energy equation) 
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 (2.5) 

(energy equation, 1D case) 
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  (2.6) 

Here p  is pressure of PV, u  is velocity of PV expanding, and F  is the self consistent force acting in 
PV, τ  is nonlocal parameter. Nonlinear evolution equations (2.1) - (2.6) contain the forces F , g  acting 
on space and masses including cross-term (see for example the last line in equation (2.6)). The relation 

ρ=F g  comes into being only after the mass appearance as result of the PV explosion.  
We intend to find the solutions of the transport equations defining the evolution of the physical 

vacuum (PV). It means: 
1. The system of non-local equations should be written for the case when the usual matter is absent 
( ρ = 0 ), but gravitation and electromagnetic fields are not absent. 
2. Physical Vacuum is “one species” system. 

Let us apply generalized quantum hydrodynamic equations for investigation of the evolution PV using 
(for better understanding) stationary 1D Cartesian description, =xF F  is the force acting in the 
positive x  - direction. We have in this limit case ρ → 0 (see also [1-6]) from the continuity equation 

 ∂ ∂τ
∂ ∂

   − =  
   
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  (2.7) 

from the momentum equation 
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   
− − − −   

   
   − + =  
   
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  (2.8) 

Transform now the energy equation (1D stationary case) (2.6) using some intermediate 
transformations 
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or 
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  (2.10) 

In the energy equation (2.10) the term pertA  defines the possible perturbation of physical vacuum as a 
result of the perturbation appearance like Higgs boson. 

 ∂ τ
∂ ρ

 ∂ = −  
∂  

2

5pert pA
x x

  (2.11) 

If gradient of the initial energy perturbation is small 
 ≅ 0pertA   (2.12) 
We write down the system of equations (2.7)-(2.9) and (2.11) using the simplest solution (2.7) 

 ∂
=

∂
p F
x

  (2.13) 
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As we see in the simplest case the PV pressure p  can be associated with potential of energy. We find 
from (2.10) 

 

∂ ∂ ∂ ∂ ∂τ
∂ ∂ ∂ ∂ ∂

∂τ
∂

   + − − + − −  
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  (2.14) 

or 
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∂ ∂ ∂ ∂ ∂
∂ ∂τ
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   
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p uu
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  (2.15) 

The next simplifying proposition is τ = const  and we simplify equation (2.15):  

 

∂ ∂ ∂ ∂ ∂τ
∂ ∂ ∂ ∂ ∂
∂ ∂τ
∂ ∂

 
+ − + − 

 

+ =
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p uu
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  (2.16) 

Using (2.13) we obtain the simplified momentum equation 

 ∂ ∂
∂ ∂

+ =3 0u pp u
x x

  (2.17) 

and the energy equation 
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∂ ∂ ∂ ∂
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∂ ∂

 
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 
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  (2.18) 

Write down equations (2.13), (2.17), (2.18) in the dimensionless forms using the scales  

   0x ,   0u ,   0p ,   = 
0

0

p
F

x
,   = 

0
0

0

x
t

u
, ρ =0 0 0 0, ,x u t  ρ= 2

0 0 0p u .  

and tilde for the dimensionless values; we reach SYSTEM 1: 

 ∂
=

∂
� �
�
p F
x

  (2.19) 

 ∂ ∂
∂ ∂

+ =
� �

� �
� �

3 0,u pp u
x x

  (2.20) 

 ∂ ∂ ∂ ∂ ∂ ∂τ τ
∂ ∂ ∂ ∂ ∂ ∂

 
+ + − − = 

 

� � � � �
� � � � � � � �
� � � � � �

24 16 5 5 4 0,u u p p up up u pg u
x x x x x x

  (2.21) 

Obviously in the limit case of local description τ =( 0)  SYSTEM 1 leads to trivial solutions. 
Let us consider now the process of excitation of physical vacuum by radiation. It is known that the 

first experiments demonstrating the direct light pressure on a surface (including gases) were realized by 
P.N. Lebedev [7]. Then when light impinges on the surface of a liquid, part of the light is reflected (with 
the reflection coefficient χ ) and the remaining fraction is transmitted. The new experiments show for 
the first time that the liquid surface bends inward, meaning that the light is pushing on the fluid in 
agreement with the Abraham momentum Ap  of light. The corresponding equation for the photon 
momentum in a dielectric with refractive index n is:  

 ν
=A

hp
nc

  (2.22) 

where h is the Plank constant, ν  is the frequency of the light and c is the speed of light in vacuum. 
Light pressure can be found by the formula 
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 ( )χ
Φ

= + 1r
rp c

  (2.23) 

where Φr  is the density of radiation energy flux falling on a surface, for the mirror surface χ = 1 . For 
the state close to thermodynamic equilibrium we have 

 =
3r
Up   (2.24) 

where U  is the energy density. 
Therefore we can introduce in system of equations (2.19) - (2.21) an external dimensionless pressure 
�exA . Generally speaking �exA  is a function of coordinates and time and should be calculated 

independently with the help of the Maxwell equations. 
As a result (if the mass perturbation can be omitted) we have the SYSTEM 2: 

 ( )∂
+ =

∂
� ��

�
exp A F

x
  (2.25) 
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∂ ∂

+ + + =
�� �� � �
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∂ ∂
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���
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�� � �� � � � � �
� � �
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� �

2

4

16 5 5

4 0.

ex

ex ex ex

ex

up A
x

uu p A u p A p A g
x x x

uu p A
x x

  (2.27) 

3   Results of Mathematical Modeling for SYSTEM 1 

Now we are ready to display the results of the mathematical modeling realized with the help of Maple 
(the versions Maple 9 or more can be used). The SYSTEM 1 has the great possibilities of mathematical 
modeling as result of changing of four Cauchy conditions and parameters τ�  �xg  and �exA  describing the 
character features of physical system.  

Maple program contains Maple’s notations – for example the expression ( ) ( ) =� 0 0D u  means in the 
usual notations ( ) ( )∂ ∂ =� �/ 0 0u x , independent variable t  responds to �x . The following Maple notations 
on figures are used: u- velocity �u , p - pressure �p , and f - the self consistent force �F , A - �exA , G  - �xg , 
T - τ� . Explanations placed under all following figures. The results of the calculations are presented in 
figures 3.1 - 3.19. The information required is contained in the figures and in figure captions. We use for 
all calculations reflected on figures 3.1 - 3.11 the Cauchy conditions 

( ) ( ) ( ) ( ) ( ) ( )= = = =� � � �0 1, 0 1, 0 1, 0 1u p D u D p , 

which of course can be changed; parameters �A  and �xg  vary widely. As a rule we use the following lines: 
�u  - solid line, �p  - dashed line, ∂ ∂� �/p x  - dotted line. 

Remarks: 
1. If ( ) ( ) ( ) ( )= =� �0 0, 0 0D u D p  and =�exA const , we have only trivial solutions =� ,u const =�p const . 
Conditions ( ) ( ) ( ) ( )≠ ≠� �0 0, 0 0D u D p  can be considered as a “ruffle” in PV and deliver the appearance 
of non trivial solutions even if the mass perturbation = 0pertA .  
2. The figures 3.1 - 3.7 are constructed for the case when the external electromagnetic field is absent 
( =� 0exA ). The left and right boundaries of the solution existence are indicated as lim1 and lim2 
correspondingly. Captions like lim1 reflect the domain of the solution existence. 
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Figure 3.1. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1 , =� 1000xg  

 

Figure 3.2. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1 , =� 100xg  

 

Figure 3.3. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1  =� 10xg  
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Figure 3.4. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1 , =� 0xg  

 
Figure 3.5. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1 , = −� 1000xg  

 
Figure 3.6. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1 , = −� 100xg  

 
Figure 3.7. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0exA , τ =� 1 , = −� 10xg  
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The following figures 3.8 - 3.10 are constructed for the same Cauchy conditions ( ) ( )= =� �0 1, 0 1u p , 
( ) ( ) =� 0 1D u , ( ) ( ) =� 0 1D p  but for the parameter =� 1exA  reflecting the appearance the external 

constant pressure radiation. 

 
Figure 3.8. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1exA , τ =� 1 , =� 0xg  

 
Figure 3.9. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1exA , τ =� 1 , = −� 10xg  

 
Figure 3.10. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1exA , τ =� 1 , =� 10xg  

The following figure 3.11 is constructed for the same Cauchy conditions ( ) ( )= =� �0 1, 0 1u p , 
( ) ( ) =� 0 1D u , ( ) ( ) =� 0 1D p  but for the parameter =� 100exA  reflecting the influence of the more strong 

external radiation. 
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Figure 3.11. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 100exA , τ =� 1 , =� 10xg  

The figures 3.12 - 3.17 show the result of modeling for different constant �A  with the Cauchy 
conditions: = =(0) 1, (0) 1,p u = −( )(0) 1,D p  = −( )(0) 1D u . 

 
Figure 3.12. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1A , τ =� 1 , = −� 10xg , �x  interval (-10, 1) 

 
Figure 3.13. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1A , τ =� 1 , = −� 10xg , �x  interval (-4000, 1) 
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Figure 3.14. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1A , τ =� 1 , =� 0xg , �x  interval (-20, 1). 

 
Figure 3.15. Evolution of ( ) ( )∂ ∂ = �� � � �/p x x F x ; =� 1A , τ =� 1 , =� 0xg  

 
Figure 3.16. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0A , τ =� 1 , = −� 10xg  
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Figure 3.17. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 0A , τ =� 1 , =� 0xg  

From the calculations reflected on figures 3.15 and 3.17 follow that the space evolution of the force 
( )� �F x  can have the character of the damped oscillations.  
The figures 3.18, 3.19 show the result of modeling for =� 1A  with the Cauchy conditions: 

= =(0) 1, (0) 1,p u = −( )(0) 1,D p  = −( )(0) 1D u  but with the opposite direction of the gravity force and 
the initial gradients of pressure and velocity. In this case the corresponding solutions occupy the finite 
space interval. 

 
Figure 3.18. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1A , τ =� 1 , =� 10xg  

= =(0) 1, (0) 1,p u = −( )(0) 1,D p  = −( )(0) 1D u . 

 
Figure 3.19. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1A , τ =� 1 , =� 100xg  

= =(0) 1, (0) 1,p u = −( )(0) 1,D p  = −( )(0) 1D u . 
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4   To the Theory of PV-Engines 

Let us discuss now from the position of the developed theory the situation with the so called “EM 
Drive”. This (hypothetical) engine was invented by British scientist Roger Shawyer in 1999. The 
principal scheme of this EM Drive can be shown as follows (Fig. 4.1): 

 
Figure 4.1. Principal scheme of EM Drive. 

Shawyer’s testing was done on a torsion balance using air bearings ([8], see also [9, 10]). He observed 
rotation of the complete apparatus with all electronics and power supplies on-board.  

The typical parameters of following White’s experiments [11-13] are as follows. The RF resonance test 
article is a copper frustum with an inner diameter of 27.9 cm on the big end, an inner diameter of 15.9 
cm on the small end, and an axial length of 22.9 cm. The vacuum test campaign consisted of a forward 
thrust phase and reverse thrust phase at less than 8 × −610  torr vacuum with power scans at 40, 60, and 
80W. The test campaign included a null thrust test effort to identify any mundane sources of impulsive 
thrust; however, none were identified. Thrust data from forward, reverse, and null suggested that the 
system was consistently performing with a thrust-to-power ratio of 1.2±0.1mN∕kW.  

The usual comment for the thrust appearance in this construction sounds as follows. The EM Drive 
uses electromagnetic waves as “fuel”, creating thrust by bouncing microwave photons back and forth 
inside a cone-shaped closed metal cavity. In other words, electricity converts into microwaves within the 
cavity that push against the inside of the device, causing the thruster to accelerate in the opposite 
direction. 

Obviously this explanation has no attitude to reality. The nozzle of this “jet engine” is closed by a 
round plate. It means that the formulated explanation leads to the contradiction with the Newton's 
Third Law, which states, "To each action there's an equal and opposite reaction," and many physicists 
say the EM Drive categorically violates that law. From the position of classical mechanics this 
corresponds to the attempt of Baron Münchhausen to pull itself out of the swamp by his own hair. In 
order for a thruster to gain momentum in a certain direction, it has to expel some kind of propellant or 
exhaust in the opposite direction. But the EM Drive knows nothing about the law of conservation of 
momentum, which Newton derived from his Third Law.  

Since its invention, the EM drive was tested many times and reveals “anomalous thrust signals”. 
Putting it mildly, we can say - if EM Drive indeed produces thrust we should find the corresponding 
explanation for this effect.  

In this case I should define my position in connection with the mentioned problem: 
1. Appearance of thrust in the systems like EM Drive does not contradict the conclusions following 

from nonlocal physics. 
2. The emergence of the thrust due to the interaction of radiation with physical vacuum. 
3. It is impossible to provide an explanation of the effect using methods of local physics. 
4. Then no reason to discuss other theoretical models originated by local physics. 

Advances in Astrophysics, Vol. 3, No. 2, May 2018 61

Copyright © 2018 Isaac Scientific Publishing AdAp



5. We do not intend to go into details of the experiment organization including the possible 
experimental errors. For us the only interesting thing is the correspondence between theoretical and 
experimental data in basic experiments.  

From this point of view the experimental results for emdrive reflected in the Internet site 
http://www.masinaelectrica.com/emdrive-independent-test/ are interesting for us. These experiments 
have the very important feature - emdrive was placed in the vertical position. As a result it was revealed 
the direct influence of gravitation on the emdrive thrust. The experimenter had rather modest 
equipment and no surprise that he did not observe the horizontal thrust which leads to ~ mN/kW. But 
he discovered the more thrust for the vertical emdrive position depending on the orientation emdrive in 
the vertical plane (~0.2-1.4 grammas).  

Compare now the figures 3.1-3.3 and 3.5-3.7 with results reflected on figure 3.4 with the absence of 
the gravitational influence (the usual horizontal balance). We see the strong influence of gravitational 
field on the PV behavior. The appearance of radiation does not change this conclusion of the principal 
significance (see for example figures 3.4, and 3.8-3.11) 

The physical vacuum is moved in the direction of action of gravity (compare figures 3.1- 3.3 and 3.5-
3.7). It should be noticed the strong influence of Cauchy conditions (PV perturbations) on the PV space 
evolution. 

The calculations presented on figures 3.1-3.11 give a general idea of the physical system filled by 
radiation, PV and gravitation. But radiation occupies only a part of the considered system diminishing 
with the grows of the distance �x  Let us reflect this fact introducing the approximation 

 =
+

��
�1

ex
n

BA
x

  (4.1) 

The following figures 4.2-4.6 show the result of modeling for approximation (4.1) for different �B  and n  
with the Cauchy conditions: = = = =(0) 1, (0) 1, ( )(0) 1, ( )(0) 1p u D p D u . 

 
Figure 4.2. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , =� 10xg , = 2n  

 
Figure 4.3. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , =� 10xg , = 4n  
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Figure 4.4. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , =� 10xg , = 6n  

 
Figure 4.5. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , =� 0xg , = 6n  

 
Figure 4.6. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , =� 0xg , = 6n  
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The following figures 4.7, 4.8 show the result of modeling for different constant �A  with the Cauchy 
conditions: = =(0) 1, (0) 1,p u = −( )(0) 1,D p  = −( )(0) 1D u . 

 
Figure 4.7. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , =� 0xg , = 6n  

 
Figure 4.8. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u x p x p x x ; =� 1B , τ =� 1 , = −� 10xg , = 6n . 

Compare now the curves reflecting the influence of the external gravitational field on the PV 
evolution; for example the curves shown in the figures 3.8 and 3.10; 3.15 and 3.16; 4.7 and 4.8. As we 
see the general features of the ( ) ( ) ∂ ∂� � � � � �, , /u x p x p x  evolution demonstrate the different style of 
behavior.  

5   PV Evolution in the External Radial Gravitational Field. The Universe 
Evolution 

From the observations follow that about 13.7 billion years ago all the matter in the Universe was 
concentrated into a single incredibly small object. This object began to enlarge rapidly in a hot 
explosion, and it is still expanding today. Evidence for the Big Bang includes:  
1. All the galaxies are moving away from us. 
2. The further away a galaxy is, the faster it is moving away.  
3. A cosmic microwave background radiation or CMBR was detected. This is received from all parts of 
the Universe and is thought to be the heat left over from the original explosion. 

Let us investigate the situation after the explosion of a spherical object from the position of nonlocal 
physics. Then we consider a spherical PV object which is placed in the external radial gravitational field. 
The following conditions are fulfilled: 
1. The physical picture corresponds to the 1D stationary situation.  
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2. Nonlocal parameter τ  is constant. 
3. The external gravitational field is an arbitrary function of radius. It means that we have two kinds of 
forces - the self-consistent force rF  (acting on the unit of volume) and known dependence ( )rg r  
(external gravitational acceleration). Other unknown values - radial hydrodynamic velocity 0rv  and PV 
pressure p  connected with the force rF . 

The nonlocal 1D hydrodynamic equations (2.1), (2.3), (2.5) have the form of continuity equation 
(non-stationary spherically symmetric case) 

 ( ) ( ) ( )ρ ρ∂ ∂ρ ∂ρ τ ρ τ ρ τ
∂ ∂ ∂

    ∂ ∂    ∂ ∂ ∂      − + + − + − − =        ∂ ∂ ∂ ∂ ∂          

2 2 2
0 02 2

0 02 2 2 2

1 1 1 1 0r r
r r r

r v r v pr v v F r
t t r r t r r rr r r r

  (5.1) 

where τ  is a nonlocality parameter. The transfer to PV means the limit case ρ → 0 ; as a result we 
have from (5.1) 

 
  ∂ ∂ − =  ∂ ∂   

2 0r
pr F

r r
  (5.2) 

Equation (5.2) immediately can be integrated 

 
 ∂

− = ∂ 
2

r
pr F С
r

  (5.3) 

Obviously = 0С  and we obtain physically transparent equation 

 ∂
=
∂r
pF
r

  (5.4) 

Momentum equation in the non-stationary spherically symmetric case is 

 

( ) ( ) ( )

( ) ( )

ρ ρ∂ ∂ ∂ ∂ρρ τ ρ τ
∂ ∂ ∂ ∂

ρ
ρ τ ρ

ττ
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  (5.5) 

The transfer to the stationary case in the PV theory means the limit case ρ → 0 , the result is 
Momentum equation in the stationary spherically symmetric case is 

 { } ( ) ( )τ   ∂∂∂ ∂ ∂   − − =   ∂ ∂ ∂ ∂ ∂    

2
002 2

02 2 2

2 1 2 0rr
r r

r pvpv
r F v r

r r r r rr r r
  (5.6) 

or  

 
   ∂ ∂    ∂ ∂ ∂ ∂ ∂ ∂  + + + − =       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
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  (5.7) 

or 

 
   ∂ ∂∂ ∂ ∂

+ + − − =   
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  (5.8) 

Consider now the energy equation 
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The transfer to the limit case ρ → 0  leads to equation (stationary case) 
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or 
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or 
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and finally 
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  (5.13) 

The last term of the energy equation (5.13) correspond as before to the external energy fluctuation 
and will be omitted. In other words we intend to consider the PV evolution under influence of the 
perturbations of the Cauchy conditions. Therefore we reach the following system of equation (SYSTEM 
3) written in the dimensionless form using the scales  
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Let us introduce the approximation  

 =�
�2
G

rg r
  (5.17) 

In this case SYSTEM 4 contains two dimensionless parameters G , τ↔ �T  and needs four Cauchy 
conditions. These conditions we write down for the external surface of the spherical object. Then we 
investigate the evolution of the surface perturbation on the following scenario of the PV behavior. 

In the theory of Big Bang the external gravitational field is absent. Let on the surface of a spherical 
PV object appears the perturbation of physical parameters in the absence of the external gravitation 
(G=0), namely 
 = ↔ = = =0(1) 1, (1) (1) 1, ( )(1) 1, ( )(1) 1rp u v D p D u   (5.18) 

Figures (5.1) - (5.14) demonstrate the results of calculations for changing τ . The information required 
is indicated in the figures and in figure captions including the boundaries of the solution existence. 

 
Figure 5.1. Evolution of ( ) ( ) ( ) ( )∂ ∂ =� � � � � � � �, , /u r p r p r r F r ; τ =� 10 , =G 0  
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Figure 5.2. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , =G 0  

 
Figure 5.3. Evolution of ( )� �u r , ( )∂ ∂� � �/u r r ; τ =� 0.434823 , =G 0  

 
Figure 5.4. Evolution of ( )� �u r , ( )∂ ∂� � �/u r r ; τ =� 0.434824 , =G 0 . 
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Figure 5.5. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 0.1 , =G 0  

 
Figure 5.6. Evolution of ( )� �u r , ( )∂ ∂� � �/u r r ; τ =� 0.1 , =G 0 . 

 
Figure 5.7. Evolution of ( ) ( ) ( )� � � � �, ,u r p r F r ; τ =� 0.01 , =G 0  
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Figure 5.8. Evolution of ( )� �u r ; τ =� 0.01 , =G 0  

 
Figure 5.9. Evolution of ( )� �u r ; τ =� 0.01 , =G 0  

 
Figure 5.10. Evolution of ( )∂ ∂� � �/u r r ; τ =� 0.01 , =G 0  
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Figure 5.11. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 0.001 , =G 0 . 

 
Figure 5.12. Evolution of ( )� �u r ; τ =� 0.001 , =G 0 . 

 
Figure 5.13. Evolution of ( )� �u r , ( )∂ ∂� � �/u r r ; τ =� 0.001 , =G 0  
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Figure 5.14. Evolution of ( )� �u r , ( )∂ ∂� � �/u r r ; τ =� 0.3 , =G 0  

Conclusion 

1. The Universe evolution leads to the finite size of this system if the nonlocality parameter τ� ~ 1  
(figures 5.1 - 5.3). 
2. Nonlocal coefficient τ�  plays the role of fundamental constant in the Universe. The critical τ�cr  exists 
when the infinite Universe transforms into the finite Universe (see figures 5.3 and 5.4). For this model 
τ =� 0.4348235cr . 
3. If τ ≈� 0.1  or less the Universe exists in the generalized Hubble regime (figures 5.6-5.14). 
4. If τ�  is not too small the generalized Hubble regime contains the “regime with acceleration” when the 
Hubble coefficient ( )�H r  is not constant and increasing with the distance �r . But with the �r  increasing 
the regime with acceleration transforms into classical Hubble regime with the constant H , ( ) = �� � �u r Hr . 
This result should be verified by observations. 
5. Varying τ�  leads to the principally different the Universe evolution before achieving the Hubble 
regime. Look at figures 5.6, 5.10, 5.13 and 5.14. In the cases reflected in figures 5.6, 5.10, 5.13 we have 
our Universe with accelerations in the first stage of evolution. But the situation reflected in the figure 
5.14 corresponds to the Universe with deceleration of the Universe expanding in the first stage of its 
evolution. 
6. Diminishing of the nonlocal parameter τ�  leads to the Hadamard effect - the smaller the parameter τ�  
the greater the rate of expansion (compare figures 5.6, 5.9, 5.10 and 5.12). 

Let us estimate τ�  for our Universe. The Hubble expression can be written in the dimensionless form 

 =
� �
�
u H
r

  (5.19) 

where the velocity scale 0
iu  is the velocity of the initial radial perturbation and 0

ir  is the radius of the 
initial object. It means that the dimensionless Hubble parameter can be written as 

 =� 0

0

i

i

r
H H

v
  (5.20) 

The ratio 0 0
i ir u  corresponds to the early times of the Universe evolution. For our time 0 0

n nr u  can be 
estimated as the age of the Universe and within the ΛCDM model is about (4,354 ± 0,012)• 1710 s . In 
this case  

 −= = ≅ ⋅ ⋅ ⋅ =
� �
�

18 170

0

2.169 10 4.35 10 0.943
n

n

ru H H
r u

  (5.21) 

Other estimates of the age of the Universe lead to much greater values of �H  (and therefore to smaller 
values of the parameter τ� ). Nevertheless we can formulate some conclusions using figures 5.5 - 5.7, 5.9, 
5.10, 5.12, 5.13: 

1. We are living in the young Universe with varying ( )� �H r . 
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2. The origin of the Universe can not be considered as singular point. In other words it means that 
initial size of our Universe is not much less that the character size of the visible now Universe. 

3. If the initial radius of the object tends to infinity, the physical picture is changing radically. This 
situation is investigated in the next Item. 

Let us consider now the PV evolution placed in the external gravitational field. The following figures 
5.15 -5.17 contain the analogues results but for =G 1 . 

 
Figure 5.15. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 10 , =G 1  

 
Figure 5.16. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , =G 1  

 
Figure 5.17. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 0.1 , =G 1  
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As we see from figures 5.15 - 5.17 diminishing of parameter τ  leads to the significant reconstruction 
of the integral curves - typical effect of the theory differential equations with the small parameter in 
front of the senior derivatives. The other important effect - in many cases (see for example figures 5.5, 
5.7) the perturbation on the surface leads to the PV-object reconstruction only in a narrow domain near 
the mentioned surface. 

Figures 5.18 and 5.19 correspond to strong gravitational fields (G=1000). 

 
Figure. 5.18. Evolution of ( ) ( )� � � �,u r p r ; τ =� 1 , =G 1000  

 
Figure 5.19. Evolution of ( )= ∂ ∂� � � � �( ) /F r p r r ; τ =� 1 , =G 1000  

The figures 5.20 and 5.21 reflect the result of modeling for the gravitational field of forces opposite 
direction.  

 
Figure 5.20. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , = −G 1  
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Figure 5.21. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , = −G 1000  

The last figures 5.22 - 5.24 show the influence of the negative gradients, namely 
 = ↔ = = − = −0(1) 1, (1) (1) 1, ( )(1) 1, ( )(1) 1rp u v D p D u   (5.22) 

  
Figure 5.22. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , =G 0 . 

 
Figure 5.23. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , = −G 1 . 
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Figure 5.24. Evolution of ( ) ( ) ( )∂ ∂� � � � � � �, , /u r p r p r r ; τ =� 1 , = −G 1000 . 

6   Semi-Analytic Solutions in the Nonlocal Theory with Gravitation 

Let us write down the system of equations (5.14)-(5.17) for the limit case of the large radius. We find 

 ∂
=
∂
��
�r
pF
r

  (6.1) 

 
 ∂∂ ∂

+ = 
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0

03 0r
r

v pp v
r r r

  (6.2) 
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  (6.3) 

After integration of (6.2) we find 

 
∂ ∂

+ =
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� �
� �
� �
0

03 0r
r

v pp v
r r

  (6.4) 

or 
 =� �3

0rv p C   (6.5) 
Using (6.4) we have from (6.3) 

 ( ) ∂
τ τ

∂
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  (6.6) 

The application of the analytic solution (6.5) obtains 

 
∂

τ τ
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or 
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  (6.8) 

Let us use the dependence ( )� �g r  in the form 

 ( ) =� �
�2
Gg r
r

  (6.9) 

In this case 
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  (6.10) 
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The ordinary differential equation (6.10) can be easily integrated by numerical way. Let us show some 
corresponding results using for example Cauchy conditions 

 
∂

= =
∂

�
�

�
0

0 (1) 1, (1) 1.r
r

v
v

r
  (6.11) 

Figures 6.1-6.11 reflect the result of numerical calculations as the Maple application. 

 
Figure 6.1. Dependence ( )� �v r , ( )� �p r , ( )� �F r , = 1,G  τ =� 1  

 
Figure 6.2. Dependence ( )� �v r , = 1,G  τ =� 1  

 
Figure 6.3. Dependence ( )� �v r , ( )� �p r , ( )� �F r , = 1,G  τ =� 0.1  
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Figure 6.4. Dependence ( )� �v r , = 1,G  τ =� 0.1  

 
Figure 6.5. Dependence ( )� �v r , ( )� �p r , ( )� �F r , = 1,G  τ =� 0.1  

 
Figure 6.6. Dependence ( )� �v r , = 1,G  τ =� 0.01  
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Figure 6.7. Dependence ( )� �v r , = 1,G  τ =� 0.001  

 
Figure 6.8. Dependence ( )� �v r , ( )� �p r , ( )� �F r , = 1,G  τ =� 0.001  

 
Figure 6.9. Dependence ( )� �v r , ( )� �F r , = 1000,G  τ =� 0.001  
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Figure 6.10. Dependence ( )� �v r , ( )� �p r , = 1000,G  τ =� 0.001 . 

 
Figure 6.11. Dependence ( )� �v r , ( )� �p r , = 1000,G  τ =� 0.001  

If the external gravitational field does not exist we have from (6.10) 

 
∂

τ τ
∂

  ∂ ∂
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r r r

v v v
v v v

r rr
  (6.12) 

Apart of the particular solution =�0rv const  this equation has the general analytical solution via W-
Lambert function which leads to unique solution of the equation in the considered conditions. But it is 
simpler to use the numerical methods. The following figures 6.12 and 6.13 reflect the calculations for 
different τ� . 

 
Figure 6.12. Dependence ( )� �v r , ( )� �p r , ( )� �F r , = 0,G  τ =� 0.001 . 

80 Advances in Astrophysics, Vol. 3, No. 2, May 2018 

AdAp Copyright © 2018 Isaac Scientific Publishing



 
Figure 6.13. Dependence ( )� �v r , ( )� �p r , ( )� �F r , = 0,G  τ =� 1 . 

Conclusion 

1. Known dependence ( )� �v r  realizes immediately the calculation ( )� �p r  using (6.5) and �rF  using (6.1). 
2. All mentioned calculations lead to so to speak “volume quantization” - the solutions exist only in the 
finite domain of space. 
3. The linear size of these domains is diminishing with the τ�  diminishing. The figure captions include 
the boundaries of the solution existence. It means that the nonlocal theory leads to the explosion of 
object whose size is significantly less than the size of the visible Universe. 

7   Some General Remarks and Conclusions 

Remind the basic conclusions following in particular from the results of mathematical modeling: 
1. Nonlocal hydrodynamics contains not only quantum hydrodynamics [1-4] but also the limit cases for 
the density ρ → ∞  (black hole) and ρ → 0  (physical vacuum including Big Bang theory). 
2. Processes in PV-engine can be considered for the case ρ ≠ 0  as well. The initial Cauchy conditions 
provide the greatest influence on the results of the calculations.  
3. The main result consists in the affirmation that the physical system “works” in regimes of attraction 
and repulsion. It is direct consequence of nonlocal physics.  
4. Appearance of the initial gradients and the external gravitational field leads to moving of the PV-
engine as a whole system, which has no attitude to the usual jet propulsion. If the initial gradients and 
gravitational force have the opposite directions, the space PV evolution is closed in the finite space 
domain. 
5. The calculations are realized in the vast diapason of parameter changing and Cauchy conditions. In 
considered cases we find the strong influence of the external gravitational and electromagnetic fields on 
PV evolution and therefore on the PV Engine. If this effect can be independently confirmed, it is 
certainly a revolution in physics and technology. 
6. The PV evolution near the massive objects (like stars) strongly depends on the force of the external 
gravitation. 
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