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Abstract In the present work, a problem on the reflection of elastic waves at a plane surface of
an elastic half-space is considered. The elastic half-space is assumed homogeneous and isotropic.
The plane surface of half-space is subjected to impedance boundary conditions, where normal
and tangential tractions are proportional to normal and tangential displacement times frequency,
respectively. The reflection coefficients of reflected P and SV are obtained in closed form for
incidence of P or SV waves. These reflection coefficients depend on the angle of incidence, impedance
parameters and other material parameters. The material parameters of Diabase (dark-colored igneous
rock), Limestone (sedimentary rock) and Gneiss (high grade metamorphic rock) are chosen to
compute the reflection coefficients for certain ranges of angle of incidence and impedance parameters.
The effect of impedance boundary on the reflection phenomena is shown graphically for three
different rock materials (Diabase, Limestone and Gneiss).

Keywords: Elastic half-space; Impedance boundary conditions; Elastic waves; Reflection coeffi-
cients.

1 Introduction

The phenomenon of wave propagation in solids is of interest in various branches of engineering and
physical sciences. In particular, the propagation of mechanical disturbances in solids is applicable in
the fields of mineral and oil exploration, geophysical exploration and seismology. The phenomenon of
mechanical disturbances in solids has a long history. Love [1] in his treatise of mathematical theory of
elasticity discussed the early investigations on propagation of mechanical disturbances in elastic solids
by great mathematicians Augustin-Louis Cauchy and Simeon Denis Poisson. Remarkable investigations
on propagation of waves in solids by Lord Rayleigh, Horace Lamb and Augustus Edward Hough Love
between years 1880 to 1910 have made the phenomenon of wave propagation in solids popular till today.
Various applications of this phenomenon are discussed in texts by Bullen [2], Ewing et al. [3], Cagniard
[4], Miklowitz [5], Achenbach [6], Ben-Menahem and Singh [7] and many more. A significant number of
problems on reflection phenomenon of elastic waves at free surface and interfaces of different elastic media
may be found in literature. Some problems of interest in different elastic media are given in references list
[8-22].

Impedance boundary conditions are a linear combination of unknown functions and their derivatives
prescribed on the boundary. Impedance boundary conditions are commonly used in various fields of physics
like acoustics and electromagnetism. However, these boundary conditions are not used much in seismology.
There exist a number of different boundaries in the Earth’s interior. Basically, the contact between two
solids is a very complex phenomenon. Generally, in case of seismic wave interactions with discontinuities
an ideally welded contact is assumed which includes the continuity of appropriate displacement and stress
components. This kind of first approximation should be extended. Therefore, it is appropriate to assume
contact planes as very thin layers which lead to impedance-like boundary conditions. Tiersten [23] derived
impedance-like boundary conditions to observe the effect of a thin layer of different material over an elastic
half-space. Malischewsky [24] investigated the Rayleigh waves with TierstenâĂŹs impedance boundary
conditions and obtained a secular equation. Godoy et al. [25] proved the existence and uniqueness of
Rayleigh waves with impedance boundary conditions. Vinh and Hue [26] discussed the propagation of
Rayleigh waves in an orthotropic and monoclinic half-space with impedance boundary conditions. Singh
[27] considered a problem on Rayleigh wave propagation in an isotropic generalized thermoelastic solid
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half-space with impedance boundary conditions. Recently, Vinh and Xuan [28] studied the propagation of
Rayleigh waves with impedance boundary condition and derived an exact formula for the velocity by
using the complex function method. Using this formula, they also established the existence and uniqueness
of the wave. However, problems on reflection of elastic waves with impedance boundary conditions are
not studied much in literature.

In this paper, the reflection phenomenon of elastic waves at a plane surface of elastic half-space is
studied, where the surface of half-space is subjected to impedance boundary conditions. The reflection
coefficients of reflected P and SV waves are obtained for incident P or SV waves. The dependence of
the reflection coefficients on impedance parameters at each angle of incidence is shown graphically for
material parameters of Diabase, Limestone and Gneiss.

2 Governing Equations of Linear Elasticity

Following Ewing et al. [3], the governing equations of linear, isotropic and homogeneous elastic medium
in absence of body forces are
(a) Constitutive equations

eij = 1
2(ui,j + uj,i), (1)

σij = 2µeij + λekkδij , (2)

(b) Equations of motion

µui,jj + (λ+ µ)uj,ij = ρüi, (3)

where eij are components of the strain tensor, σij are components of the stress tensor, ui are components
of the displacement vector, δij is Kronecker delta, ρ is the density of the medium, λ, µ are Lame′s constants.
Subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate. The superposed dot denotes the partial differentiation with respect to the time t.

We consider a linear, isotropic and homogeneous elastic medium in the undeformed state. We take
the origin at plane surface and negative y− axis normally into the half-space which is thus represented
by y < 0. Following Godoy [25] and Vinh and Hue [26], we assume that the surface y = 0 is subjected
to impedance boundary conditions, where normal and tangential tractions depend linearly on normal
and tangential displacements times frequency, respectively. We choose the x-axis in the direction of
propagation of waves.

Using the following Helmholtz’s representations

u1 = ∂φ

∂x
− ∂ψ

∂y
, u2 = ∂φ

∂y
+ ∂ψ

∂x
, (4)

in the equation (3), we obtain the following equations in x− y plane,

(λ+ 2µ)
[
∂2φ

∂x2 + ∂2φ

∂y2

]
= ρ

∂2φ

∂t2
, (5)

µ(∂
2ψ

∂x2 + ∂2ψ

∂y2 ) = ρ
∂2ψ

∂t2
. (6)

Following Ewing et al. [3], there exist two plane waves in x-y plane namely longitudinal wave (P wave)
and shear wave (SV wave) with speeds v1 and v2 given by

v1 =

√
λ+ 2µ
ρ

, v2 =
√
µ

ρ
. (7)
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3 Reflection at a Plane Surface

An incident P or SV wave travels in half-space y < 0 making an angle θ0 with normal to the half-space
and impinges at plane surface y = 0. The energy of an incident wave is partitioned into two reflected
waves, namely, P and SV waves as shown in Figure 1. The potentials representing the incident and
reflected waves are expressed as

φ = A0e
ik1(sin θ0x+cos θ0y−v1t) +A1e

ik1(sin θ1x−cos θ1y−v1t), (8)

ψ = B0e
ik2(sin θ0x+cos θ0y−v2t) +B1e

ik2(sin θ2x−cos θ2y−v2t). (9)

Here, for incident P wave, B0 = 0 and for incident SV wave, A0 = 0.

Figure 1. Geometry of the model showing incident and reflected waves.

The tangential force component tyx and normal force stress component tyy are proportional to
tangential and normal displacement components times frequency, respectively, i.e.

tyx + ωZ1u1 = 0, tyy + ωZ2u2 = 0, (10)

where

tyx = µ(2 ∂2φ

∂x∂y
+ ∂2ψ

∂x2 −
∂2ψ

∂y2 ), (11)

tyy = λ(∂
2φ

∂x2 −
∂2ψ

∂x∂y
) + (λ+ 2µ)(∂

2φ

∂y2 + ∂2ψ

∂x∂y
), (12)

and Z1 and Z2 are the proportional coefficients called as impedance parameters. The traction free
boundary conditions are recovered by setting Z1 = 0 and Z2 = 0.
At any boundary point and at any time, we also assume that the circular frequency of each reflected wave
is equal to that of an incident wave, i.e.,

k1v1 = k2v2, (13)

and the apparent wave number of every wave is equal, i.e.,

k0 sin θ0 = k1 sin θ1 = k2 sin θ2. (14)
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where k0 = k1 for incident P wave and k0 = k2 for incident SV wave. Keeping in view of equations (13)
and (14), the potentials given by equations (8) and (9) satisfy the boundary conditions (10) and we obtain
the reflection coefficients of reflected P and SV waves in closed form as

R1 = a12b2 − a22b1

a12a21 − a11a22
, R2 = a21b1 − a11b2

a12a21 − a11a22
, (15)

where for (a) Incident P wave (θ0 = θ1) :

R1 = A1

A0
, R2 = B1

A0
,

a11 = sin θ0 [2 cos θ0 + i(v1/v2)Z1
∗] ,

a12 =
[
{1− 2(v2/v1)2 sin2 θ0}+ iZ1

∗
√

1− (v2/v1)2 sin2 θ0

]
(v1/v2)2,

b1 = sin θ0 [2 cos θ0 − i(v1/v2)Z1
∗] ,

a21 = −
[
(v1/v2)2 − 2 sin2 θ0

]
− i(v1/v2)Z2

∗ cos θ0,

a22 = (v1/v2) sin θ0

[
2
√

1− (v2/v1)2 sin2 θ0 + iZ2
∗
]
,

b2 =
[
(v1/v2)2 − 2 sin2 θ0

]
− i(v1/v2)Z2

∗ cos θ0,

Z1
∗ = Z1/

√
ρµ, Z2

∗ = Z2/
√
ρµ,

and for (b) Incident SV wave (θ0 = θ2) :

R1 = A1

B0
, R2 = B1

B0
,

a11 = (v2/v1) sin θ0

[
2
√

1− (v1/v2)2 sin2 θ0 + iZ1
∗(v1/v2)

]
a12 = cos 2θ0 + iZ1

∗ cos θ0,

b1 = − cos 2θ0 + iZ1
∗ cos θ0,

a21 = − cos 2θ0 − i(v2/v1)Z2
∗
√

1− (v1/v2)2 sin2 θ0,

a22 = sin 2θ0 + iZ2
∗ sin θ0,

b2 = sin 2θ0 − iZ2
∗ sin θ0,

These expressions for reflection coefficients reduce for the case of an elastic solid half-space with
traction free boundary conditions when we set Z1 = 0 and Z2 = 0.

4 Numerical Results and Discussion

Following three different rock materials are chosen for numerical computations of reflection coefficients of
reflected P and reflected SV for incidence of both P and SV waves:

Diabase: ρ = 2700 kg.m−3, E = 90 GPa, ν = 0.2
Limestone: ρ = 2400 kg.m−3, E = 70 GPa, ν = 0.3
Gneiss: ρ = 2800 kg.m−3, E = 60 GPa, ν = 0.24

The expressions for Lame’s constants λ and µ in terms of Young’s Modulus E and Poisson ratio ν are
as

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) .
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4.1 Incident P Wave

For incidence of P wave from plane surfaces of diabase, limestone and gneiss, the variations of the
reflection coefficients of reflected P and SV waves are shown graphically against the angle of incidence
in figures 2 to 4 by solid (Z1 = 0, Z2 = 0), small dashed (Z1 = −100 MPa,Z2 = −100 MPa) and long
dashed lines (Z1 = 50 MPa,Z2 = 50 MPa). For Z1 = 0, Z2 = 0, the maximum values of reflection
coefficients of reflected P wave are one at normal incidence (θ0 = 0o) and at grazing incidence (θ0 = 90o)
and the minimum values of reflection coefficients of reflected P wave are found at angles of incidence
θ0 = 50o, θ0 = 67o and θ0 = 57o in diabase, limestone and gneiss, respectively. For Z1 = 0, Z2 = 0,
the minimum values of reflection coefficients of reflected SV are observed zero at normal and grazing
incidences and the maximum values of reflection coefficients of reflected SV wave are found at angles of
incidence θ0 = 43o, θ0 = 47o and θ0 = 44o in diabase, limestone and gneiss, respectively. The solid line
variations (Z1 = 0, Z2 = 0) in figures 2 to 4 correspond to those for traction free boundary and agree
fairly with the existing established results in literature [ref. 3-7]. The comparison of different variations
for different sets of impedance parameters in figures 2 to 4 shows the influence of impedance boundary
on reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss at each angle of
incident except normal and grazing incidence. However, this effect is observed maximum at angles of
incidence near to grazing incidence.

Figure 2. Variations of the reflection coefficients of reflected P and SV waves in diabase against the angle of
incidence of P wave for different sets of impedance parameters.

In case of limestone, the variations of the reflection coefficients of reflected P and SV waves are shown
in figure 5 against the impedance parameter Z1 varying from −100MPa to 100MPa when Z2 = 0 and for
angles of incidence θ0 = 0o, 30o, 45o, 60o and 90o. For the range −100 ≤ Z1 ≤ 100, the reflection coefficient
of P wave is one at θ0 = 0o and θ0 = 90o as shown by solid line. For angles of incidences θ0 = 30o, 45o
and 60o, reflection coefficient of reflected P wave is maximum at Z1 = −100 and Z1 = 100 and attain
minimum values 0.7043, 0.4369 and 0.2332 at Z1 = 0 as shown by solid lines with center symbols as star,
oplus and otimes, respectively. However, the reflection coefficient of reflected SV wave is minimum at
Z1 = −100 and Z1 = 100 and attain maximum values at Z1 = 0. Similar variations of the reflection
coefficients of reflected P and SV waves are also shown against the impedance parameter Z2 varying
from −100 to 100 in Figure 6, when Z1 = 0 and for angles of incidence θ0 = 0o, 30o, 45o, 60o and 90o.
The comparison of different variations in Figures 5 and 6 shows the influence of impedance boundary on
reflection coefficients of reflected P and SV waves at different angles of incidence. In diabase, limestone
and gneiss, the variations of reflection coefficients of reflected P and SV waves are also shown against
the impedance parameters Z1 varying from −100 to 100 in Figure 7, when Z2 = 0 and θ0 = 45o. The
variations of the reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss are
also shown against the impedance parameter Z2 varying from −100 to 100 in Figure 8, when Z1 = 0 and
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Figure 3. Variations of the reflection coefficients of reflected P and SV waves in limestone against the angle of
incidence of P wave for different sets of impedance parameters.

Figure 4. Variations of the reflection coefficients of reflected P and SV waves in gneiss against the angle of
incidence of P wave for different sets of impedance parameters.

Figure 5. Variations of the reflection coefficients of reflected P and SV waves in limestone against the impedance
parameter Z1 for different angles on incidence of P wave when Z2 = 0
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Figure 6. Variations of the reflection coefficients of reflected P and SV waves in limestone against the impedance
parameter Z2 for different angles on incidence of P wave when Z1 = 0.

θ0 = 45o. The comparison of different variations in Figures 7 and 8 shows the influence of impedance
boundary at angle of incidence θ0 = 45o in three different rock materials.

Figure 7. Variations of the reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss
against the impedance parameter Z1 for angle θ = 45◦ of incident P wave when Z2 = 0.

4.2 Incident SV Wave

For incident SV wave, the variations of the reflection coefficients of reflected P and SV waves in diabase,
limestone and gneiss, are shown graphically against the angle of incidence in Figures 9 to 11 for three
different sets of impedance parameters (Z1 = 0, Z2 = 0), (Z1 = −100, Z2 = −100) and (Z1 = 50, Z2 = 50)
by solid, small dashed and long dashed lines, respectively. For Z1 = 0, Z2 = 0 (traction free boundary),
the minimum values of reflection coefficients of reflected P are zero at normal incidence (θ0 = 0o) and the
maximum values of reflection coefficients of reflected P wave are found at angles of incidence θ0 = 37o,
θ0 = 32o and θ0 = 35o in diabase, limestone and gneiss, respectively. Beyond these critical angles, the
total reflection takes place. (Z1 = 0, Z2 = 0), the maximum values of reflection coefficients of reflected
SV are observed one at normal incidence and the minimum values of reflection coefficients of reflected
SV wave are observed at θ0 = 28o, θ0 = 29o and θ0 = 29o in diabase, limestone and gneiss, respectively.
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Figure 8. Variations of the reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss
against the impedance parameter Z2 for angle θ = 45◦ of incident P wave when Z1 = 0.

The comparison of different variations in figures 9 to 11 shows the significant influence of impedance
boundary reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss at each
angle of incident except normal incidence. The variations of the reflection coefficients of reflected P and

Figure 9. Variations of the reflection coefficients of reflected P and SV waves in diabase against the angle of
incidence of SV wave for different sets of impedance parameters.

SV waves in limestone are shown in Figure 12 against the impedance parameter Z1 varying from −100
to 100 when Z2 = 0 and for angles of incidence θ0 = 0o, 10o, 20o and 30o. For the range −100 ≤ Z1 ≤ 100,
the reflection coefficient of P wave is zero at θ0 = 0o as shown by solid line along horizontal axis in
Figure 12. For angles of incidences θ0 = 10o, 20o and 30o, the reflection coefficient of reflected P wave is
minimum at Z1 = −100 and Z1 = 100 and attain maximum values 0.6816, 1.283 and 2.0936 at Z1 = 0 as
shown by solid lines with center symbols as star, oplus and otimes, respectively. However, the reflection
coefficient of reflected SV wave is maximum at Z1 = −100 and Z1 = 100 and attain minimum values at
Z1 = 0. For the case of limestone, the variations of the reflection coefficients of reflected P and SV waves
are also shown against the impedance parameter Z2 varying from −100 to 100 in Figure 13, when Z1 = 0
and for angles of incidence θ0 = 0o, 10o, 20o and 30o. The comparison of different variations in figures 12
and 13 shows the effects of impedance boundary on reflection coefficients of reflected P and SV waves at
different angles of incidence. For diabase, limestone and gneiss, the variations of reflection coefficients
of reflected P and SV waves are also shown against the impedance parameters Z1 varying from −100
to 100 in Figure 14, when Z2 = 0 and θ0 = 15o. The variations of the reflection coefficients of reflected
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Figure 10. Variations of the reflection coefficients of reflected P and SV waves in limestone against the angle of
incidence of SV wave for different sets of impedance parameters.

Figure 11. Variations of the reflection coefficients of reflected P and SV waves in gneiss against the angle of
incidence of SV wave for different sets of impedance parameters.

Figure 12. Variations of the reflection coefficients of reflected P and SV waves in limestone against the impedance
parameter Z1 for different angles on incidence of SV wave when Z2 = 0.

P and SV waves in diabase, limestone and gneiss are also shown against the impedance parameter Z2
varying from −100 to 100 in Figure 8, when Z1 = 0 and θ0 = 15o. The comparison of different variations
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Figure 13. Variations of the reflection coefficients of reflected P and SV waves in limestone against the impedance
parameter Z2 for different angles on incidence of SV wave when Z1 = 0.

in Figures 14 and 15 shows the impact of impedance boundary on reflection coefficients at θ0 = 15o in
three different rock materials.

Figure 14. Variations of the reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss
against the impedance parameter Z1 for angle θ = 15◦ of incident SV wave, when Z2 = 0.

5 Conclusions

An elastic solid half-space is considered whose plane surface is subjected to impedance boundary conditions.
A problem on reflection of P and SV waves is considered. The reflection coefficients of reflected P and
SV waves are obtained in closed form. These coefficients are computed numerically for diabase, limestone
and gneiss to show the impact of impedance boundary. From theory and numerical results, following
observations are made:
(i) In diabase, limestone and gneiss, the reflection coefficient of reflected P wave increases at each angle of
incidence (except normal and grazing incidences) with the increase in |Z1| or |Z2|. However, the reflection
coefficient of reflected SV wave decreases with the increase in |Z1| or |Z2|.
(ii)The impact of impedance parameters is observed significant in range 40 ≤ θ0 < 90 for incidence of
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Figure 15. Variations of the reflection coefficients of reflected P and SV waves in diabase, limestone and gneiss
against the impedance parameter Z2 for angle θ = 15◦ of incident SV wave, when Z1 = 0.

P wave. However, for incidence of SV wave, the maximum impact of impedance is observed at critical
incidences.
(iii) For Z1 = 0, Z2 = 0, the numerical results correspond to those for traction free boundary and agree
fairly with the established results found in literature.
(iv) The present numerical results may provide useful information to experimental scientists working in
the field of wave propagation in solids.
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