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Abstract In this paper, we give the explicit formulas for Neuman means of the second kind
NGQ(a, b) and NQG(a, b), and find the best possible parameters αi, βi ∈ (0, 1)(i = 1, 2, 3, · · · , 6)
such that the double inequalities

α1Q(a, b) + (1− α1)G(a, b) < NQG(a, b) < β1Q(a, b) + (1− β1)G(a, b),

α2

G(a, b) + 1− α2

Q(a, b) <
1

NQG(a, b) <
β2

G(a, b) + 1− β2

Q(a, b) ,

α3Q(a, b) + (1− α3)G(a, b) < NGQ(a, b) < β3Q(a, b) + (1− β3)G(a, b),
α4

G(a, b) + 1− α4

Q(a, b) <
1

NGQ(a, b) <
β4

G(a, b) + 1− β4

Q(a, b) ,

α5Q(a, b) + (1− α5)V (a, b) < NQG(a, b) < β5Q(a, b) + (1− β5)V (a, b),
α6Q(a, b) + (1− α6)U(a, b) < NGQ(a, b) < β6Q(a, b) + (1− β6)U(a, b),

holds for all a, b > 0 with a 6= b, where G(a, b) and Q(a, b) are the classical geometric and quadratic
means, V (a, b), U(a, b), NQG(a, b) and NGQ(a, b) are Yang and Neuman mean of the second kind.

Keywords: geometric mean, quadratic mean, Neuman means of the second kind, Yang means,
inequalities.

1 Introduction

For a, b > 0 with a 6= b, the Schwab-Borchardt mean SB(a, b)[1,2] is defined by

SB(a, b) =


√
b2 − a2

cos−1(a/b) , if a < b ,

√
a2 − b2

cosh−1(a/b)
, if a > b .

where cos−1(x) and cosh−1(x) = log(x+
√
x2 − 1) are the inverse cosine and inverse hyperbolic cosine

functions, respectively.
It is well-known that SB(a, b) is strictly increasing in both a and b, nonsymmetric and homogeneous

of degree 1 with respect to a and b. Many symmetric bivariate means are special cases of the Schwab-
Borchardt mean, for example, the first and second Seiffert means, Neuman-Sándor mean, logarithmic
mean and two Yang means [3] are respectively defined by

P = P (a, b) = a− b
2 sin−1 [(a− b)/(a+ b)

] = SB(G,A) ,

T = T (a, b) = a− b
2 tan−1 [(a− b)/(a+ b)

] = SB(A,Q) ,
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M = M(a, b) = a− b
2 sinh−1 [(a− b)/(a+ b)

] = SB(Q,A) ,

L = L(a, b) = a− b
2 tanh−1 [(a− b)/(a+ b)

] = SB(A,G) ,

U = U(a, b) = a− b√
2 tan−1 [(a− b)/√2ab

] = SB(G,Q) , (1)

and
V = V (a, b) = a− b√

2 sinh−1 [(a− b)/√2ab
] = SB(Q,G) . (2)

where G = G(a, b) =
√
ab , A = A(a, b) = (a + b)/2 and Q = Q(a, b) =

√
(a2 + b2)/2 are the classical

geometric, arithmetic and quadratic means of a and b.
Let X = X(a, b) and Y = Y (a, b) be the symmetric bivariate means of a and b. Then Neuman mean

of the second kind NXY (a, b)[4] is defined by

NXY (a, b) = 1
2

[
X + Y 2

SB(X,Y )

]
. (3)

Moreover, without loss of generality, let a > b, v = (a − b)/(a + b) ∈ (0, 1), then Neuman [4] gave
explicit formulas

NAG(a, b) = 1
2A
[
1 + (1− v2) tanh

−1(v)
v

]
, NGA(a, b) = 1

2A
[√

1− v2 + sin−1(v)
v

]
NAQ(a, b) = 1

2A
[
1 + (1 + v2) tan

−1(v)
v

]
, NQA(a, b) = 1

2A
[√

1 + v2 + sinh−1(v)
v

]
and inequalities

G(a, b) < L(a, b) < NAG(a, b) < P (a, b) < NGA(a, b) < A(a, b)

< M(a, b) < NQA(a, b) < T (a, b) < NAQ(a, b) < Q(a, b) .

for all a, b > 0 with a 6= b.
In the recent past, the Schwab-Borchardt mean has been the subject of intensive research. In particular,

many remarkable inequalities for Schwab-Borchardt mean and its generated means can be found in the
literature [4-14].

In [4], Neuman found the best possible constants α1, α2, α3, α4 and β1, β2, β3, β4 such that the double
inequalities

α1A(a, b) + (1− α1)G(a, b) < NGA(a, b) < β1A(a, b) + (1− β1)G(a, b)
α2Q(a, b) + (1− α2)A(a, b) < NAQ(a, b) < β2Q(a, b) + (1− β2)A(a, b)
α3A(a, b) + (1− α3)G(a, b) < NAG(a, b) < β3A(a, b) + (1− β3)G(a, b)
α4Q(a, b) + (1− α4)A(a, b) < NQA(a, b) < β4Q(a, b) + (1− β4)A(a, b)

hold for a, b > 0 with a 6= b if and only if α1 ≤ 2/3, β1 ≥ π/4, α2 ≤ 2/3, β2 ≥ (π − 2)/
[
4(
√

2 − 1)
]

=
0.689 · · · , α3 ≤ 1/3, β3 ≥ 1/2 and α4 ≤ 1/3, β4 ≥

[
log(1 +

√
2) +

√
2− 2

]
/
[
2(
√

2− 1)
]

= 0.356 · · ·
Zhang et al. [11] presented the best possible parameters α1, α2, β1, β2 ∈ [0, 1/2] and α3, α4, β3, β4 ∈

[1/2, 1] such that the double inequalities

G
(
α1a+ (1− α1)b, α1b+ (1− α1)a

)
< NAG(a, b) < G

(
β1a+ (1− β1)b, β1b+ (1− β1)a

)
G
(
α2a+ (1− α2)b, α2b+ (1− α2)a

)
< NGA(a, b) < G

(
β2a+ (1− β2)b, β2b+ (1− β2)a

)
Q
(
α3a+ (1− α3)b, α3b+ (1− α3)a

)
< NQA(a, b) < Q

(
β3a+ (1− β3)b, β3b+ (1− β3)a

)
Q
(
α4a+ (1− α4)b, α4b+ (1− α4)a

)
< NAQ(a, b) < Q

(
β4a+ (1− β4)b, β4b+ (1− β4)a

)
.
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hold for all a, b > 0 with a 6= b.
Guo et.al. [12] proved that the double inequalities

Ap1(a, b)G1−p1(a, b) < NGA(a, b) < Aq1(a, b)G1−q1(a, b) ,
p2

G(a, b) + 1− p2

A(a, b) < NGA(a, b) < q2

G(a, b) + 1− q2

A(a, b) ,

Ap3(a, b)G1−p3(a, b) < NAG(a, b) < Aq3(a, b)G1−q3(a, b) ,
p4

G(a, b) + 1− p4

A(a, b) < NAG(a, b) < q4

G(a, b) + 1− q4

A(a, b) ,

Qp5(a, b)A1−p5(a, b) < NAQ(a, b) < Qq5(a, b)A1−q5(a, b) ,
p6

A(a, b) + 1− p6

Q(a, b) < NAQ(a, b) < q6

A(a, b) + 1− q6

Q(a, b) ,

Qp7(a, b)A1−p7(a, b) < NQA(a, b) < Qq7(a, b)A1−q7(a, b) ,
p8

A(a, b) + 1− p8

Q(a, b) < NQA(a, b) < q8

A(a, b) + 1− q8

Q(a, b) .

hold for all a, b > 0 with a 6= b if and only if p1 ≤ 2/3, q1 ≥ 1, p2 ≤ 0, q2 ≥ 1/3, p3 ≤ 1/3, q3 ≥ 1, p4 ≤ 0,
q4 ≥ 2/3, p5 ≤ 2/3, q5 ≥ 2 log(π+2)/ log 2−4 = 0.7244 · · · , p6 ≤

[
6+2
√

2−(1+
√

2)π
]
/(π+2) = 0.2419 · · · ,

q6 ≥ 1/3, p7 ≤ 1/3, q7 ≥ 2 log
[√

2+log(1+
√

2)
]
/ log 2−2 = 0.3977 · · · and p8 ≤

[
2+
√

2−(1+
√

2) log(1+√
2)
]
/
[√

2 + log(1 +
√

2)
]

= 0.5603 · · · , q8 ≥ 2/3.
Let a > b > 0, u = (a− b)/

√
2ab ∈ (0,+∞). Then from (1)-(3) we gave the explicit formulas

NQG(a, b) = 1
2G(a, b)

[√
1 + u2 + sinh−1(u)

u

]
. (4)

NGQ(a, b) = 1
2G(a, b)

[
1 + (1 + u2) tan−1(u)

u

]
. (5)

The main purpose of this paper is to find the best possible parameters αi, βi ∈ (0, 1)(i = 1, 2, 3, · · · , 6)
such that the double inequalities

α1Q(a, b) + (1− α1)G(a, b) < NQG(a, b) < β1Q(a, b) + (1− β1)G(a, b) ,
α2

G(a, b) + 1− α2

Q(a, b) <
1

NQG(a, b) <
β2

G(a, b) + 1− β2

Q(a, b) ,

α3Q(a, b) + (1− α3)G(a, b) < NGQ(a, b) < β3Q(a, b) + (1− β3)G(a, b) ,
α4

G(a, b) + 1− α4

Q(a, b) <
1

NGQ(a, b) <
β4

G(a, b) + 1− β4

Q(a, b) ,

α5Q(a, b) + (1− α5)V (a, b) < NQG(a, b) < β5Q(a, b) + (1− β5)V (a, b) ,
α6Q(a, b) + (1− α6)U(a, b) < NGQ(a, b) < β6Q(a, b) + (1− β6)U(a, b) .

hold for all a, b > 0 with a 6= b.

2 Lemma

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1 (see[15]) For −∞ < a < b < +∞, let f, g : [a, b] → R be continuous on [a, b], and be
differentiable on (a, b), let g′(x) 6= 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b), then so
are

f(x)− f(a)
g(x)− g(a) ,

f(x)− f(b)
g(x)− g(b)

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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Lemma 2.2 (see [16]). Suppose that the power series f(x) =
∞∑

n=0
anx

n and g(x) =
∞∑

n=0
bnx

n have the

radius of convergence r > 0 with an, bn > 0 for all n = 0, 1, 2, · · · . Let h(x) = f(x)/g(x), if the sequence
series {an/bn}∞n=0 is (strictly) increasing (decreasing), then h(x) is also (strictly) increasing (decreasing)
on (0, r).

Lemma 2.3 (1) (See [17], Lemma 2.4) The function

ϕ1(x) = 2x+ sinh(2x)− 4 sinh(x)
sinh(2x)− 2 sinh(x)

is strictly increasing from (0,+∞) onto(2/3, 1).
(2)(See [17], Lemma 2.6) The function

ϕ2(x) = sinh(x) cosh(x)− x[
cosh(x)− 1

][
x+ sinh(x) cosh(x)

]
is strictly decreasing from (0,+∞) onto (0, 2/3).

(3)(See [17], Lemma 2.5) The function

ϕ3(x) = 2x− sin(2x)
sin(x)

[
1− cos(x)

]
is strictly increasing from (0, π/2) onto(8/3, π).

(4)(See [17], Lemma 2.8) The function

ϕ4(x) = sin(x) cos(x)− x[
1− cos(x)

][
x+ sin(x) cos(x)

]
is strictly decreasing from (0, π/2) onto(−1,−2/3).

Lemma 2.4 The function
ϕ5(x) = x sinh(2x)− 2x2

x sinh(2x)− cosh(2x) + 1
is strictly decreasing from (0,+∞) onto(1, 2).

Proof. Let f1(x) = x sinh(2x)− 2x2, g1(x) = x sinh(2x)− cosh(2x) + 1. Then simple computations
lead to

ϕ5(x) = f1(x)
g1(x) = f1(x)− f1(0+)

g1(x)− g1(0+) . (6)

f ′1(x)
g′1(x) = sinh(2x) + 2x cosh(2x)− 4x

2x cosh(2x)− sinh(2x)

=
2x
∞∑

n=0

22n

(2n)!x
2n +

∞∑
n=0

22n+1

(2n+1)!x
2n+1 − 4x

2x
∞∑

n=0

22n

(2n)!x
2n −

∞∑
n=0

22n+1

(2n+1)!x
2n+1

=

∞∑
n=1

(n+1)×22n+2

(2n+1)! x2n+1

∞∑
n=1

n×22n+2

(2n+1)! x
2n+1

=

∞∑
n=0

(n+2)×22n+4

(2n+3)! x2n

∞∑
n=0

(n+1)×22n+4

(2n+3)! x2n

.

(7)

Let
an = (n+ 2)× 22n+4

(2n+ 3)! > 0, bn = (n+ 1)× 22n+4

(2n+ 3)! > 0 . (8)

and
an+1

bn+1
− an

bn
= − 1

(n+ 1)(n+ 2) < 0 . (9)
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for all n ≥ 0.
It follows from Lemma 2.2 and (7)-(9) that f ′1(x)/g′1(x) is strictly decreasing on (0,+∞). Note that

ϕ5(0+) = a0

b0
= 2, ϕ5(+∞) = 1 . (10)

Therefore, Lemma 2.4 follows easily from Lemma 2.1 and (6), (10) together with the monotonicity of
f ′1(x)/g′1(x).

Lemma 2.5 The function
ϕ6(x) = x2 + x sin(x) cos(x)− 2 sin2(x)

sin(x)
[
x− sin(x)

]
is strictly increasing from (0, π/2) onto (0, (π2 − 8)/[2(π − 2)]).

Proof.The function ϕ6(x) can be rewritten as

ϕ6(x) = x

sin(x) + x+ x cos(x)− 2 sin(x)
x− sin(x) = ϕ7(x) + ϕ8(x) . (11)

where ϕ7(x) = x/ sin(x) and ϕ8(x) = [x+ x cos(x)− 2 sin(x)]/[x− sin(x)].
Let f2(x) = x+x cos(x)−2 sin(x), g2(x) = x−sin(x), f3(x) = 1−cos(x)−x sin(x) and g3(x) = 1−cos(x).

Then simple computations lead to

ϕ8(x) = f2(x)
g2(x) = f2(x)− f2(0+)

g2(x)− g2(0+) . (12)

f ′2(x)
g′2(x) = f3(x)

g3(x) = f3(x)− f3(0+)
g3(x)− g3(0+) . (13)

and
f ′3(x)
g′3(x) = − x

tan(x) . (14)

Since the function x→ x/ tan(x) is strictly decreasing on (0, π/2), hence Lemma 2.1 and (12)-(14) lead
to that ϕ8(x) is strictly increasing on (0, π/2). From (11) and the fact that the function ϕ7(x) = x/ sin(x)
is strictly increasing on (0, π/2) together with the monotonicity of ϕ8(x) we can reach the conclusion
that ϕ6(x) is strictly increasing on (0, π/2).

Note that
ϕ6(0+) = 0, ϕ6(π2 ) = π2 − 8

2(π − 2) . (15)

Therefore, Lemma 2.5 follows easily from (15) and the monotonicity of ϕ6(x).

3 Main Results

Theorem 3.1 The double inequalities

α1Q(a, b) + (1− α1)G(a, b) < NQG(a, b) < β1Q(a, b) + (1− β1)G(a, b) . (16)

α2

G(a, b) + 1− α2

Q(a, b) <
1

NQG(a, b) <
β2

G(a, b) + 1− β2

Q(a, b) . (17)

hold for all a, b > 0 with a 6= b if and only if α1 ≤ 1/3, β1 ≥ 1/2, α2 ≤ 0 and β2 ≥ 2/3.
Proof.We clearly see that inequalities (16) and (17) can be rewritten as

α1 <
NQG(a, b)−G(a, b)
Q(a, b)−G(a, b) < β1 . (18)

and
α2 <

1/NQG(a, b)− 1/Q(a, b)
1/G(a, b)− 1/Q(a, b) < β2 . (19)
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respectively.
Since both the geometric mean G(a, b) and quadratic mean Q(a, b) are symmetric and homogeneous

of degree 1, without loss of generality, we assume that a > b > 0. Let u = (a− b)/
√

2ab ∈ (0,+∞). Then
from (4) and (18)-(19) together with Q(a, b) = G(a, b)

√
1 + u2 we have

α1 <

1
2

[√
1 + u2 + sinh−1(u)

u

]
− 1

√
1 + u2 − 1

< β1 . (20)

and

α2 <
u
√

1 + u2 − sinh−1(u)
(
√

1 + u2 − 1)
[
u
√

1 + u2 + sinh−1(u)
] < β2 . (21)

respectively.
Let x = sinh−1(u). Then x ∈ (0,+∞),

1
2

[√
1 + u2 + sinh−1(u)

u

]
− 1

√
1 + u2 − 1

= 1
2

2x+ sinh(2x)− 4 sinh(x)
sinh(2x)− 2 sinh(x) = 1

2ϕ1(x) .

(22)

u
√

1 + u2 − sinh−1(u)
(
√

1 + u2 − 1)
[
u
√

1 + u2 + sinh−1(u)
]

= sinh(x) cosh(x)− x
[cosh(x)− 1][x+ sinh(x) cosh(x)] = ϕ2(x) .

(23)

where the functions ϕ1(x) and ϕ2(x) are defined as in Lemma 2.3(1) and (2).
Therefore, inequality (16) holds for all a, b > 0 with a 6= b if and only if α1 ≤ 1/3 and β1 ≥ 1/2 follows

from (20) and (22) together with Lemma 2.3(1), inequality (17) holds for all a, b > 0 with a 6= b if and
only if α2 ≤ 0 and β2 ≥ 2/3 follows from (21) and (23) together with Lemma 2.3(2).

Theorem 3.2 The double inequalities

α3Q(a, b) + (1− α3)G(a, b) < NGQ(a, b) < β3Q(a, b) + (1− β3)G(a, b) . (24)

α4

G(a, b) + 1− α4

Q(a, b) <
1

NGQ(a, b) <
β4

G(a, b) + 1− β4

Q(a, b) . (25)

holds for all a, b > 0 with a 6= b if and only if α3 ≤ 2/3, β3 ≥ π/4, α4 ≤ 0 and β4 ≥ 1/3.
Proof.We clearly see that inequalities (24) and (25) can be rewritten as

α3 <
NGQ(a, b)−G(a, b)
Q(a, b)−G(a, b) < β3 . (26)

and
α4 <

1/NGQ(a, b)− 1/Q(a, b)
1/G(a, b)− 1/Q(a, b) < β4 . (27)

respectively.
Since both the geometric mean G(a, b) and quadratic mean Q(a, b) are symmetric and homogeneous

of degree 1, without loss of generality, we assume that a > b > 0. Let u = (a− b)/
√

2ab ∈ (0,+∞). Then
from (5) and (26)-(27) together with Q(a, b) = G(a, b)

√
1 + u2 we have

α3 <

1
2

[
1 + (1 + u2) tan−1(u)

u

]
− 1

√
1 + u2 − 1

< β3 . (28)

144 Journal of Advances in Applied Mathematics, Vol. 1, No. 3, July 2016

JAAM Copyright © 2016 Isaac Scientific Publishing



and

α4 <
2u
√

1 + u2 − [u+ (1 + u2) tan−1(u)]
(
√

1 + u2 − 1)
[
u+ (1 + u2) tan−1(u)

] < β4 . (29)

respectively.
Let x = tan−1(u). Then x ∈ (0, π/2),

1
2

[
1 + (1 + u2) tan−1(u)

u

]
− 1

√
1 + u2 − 1

= 1
4

2x− sin(2x)
sin(x)[1− cos(x)] = 1

4ϕ3(x) .

(30)

2u
√

1 + u2 − [u+ (1 + u2) tan−1(u)]
(
√

1 + u2 − 1)
[
u+ (1 + u2) tan−1(u)

]
= 1 + sin(x) cos(x)− x

[1− cos(x)][x+ sin(x) cos(x)] = 1 + ϕ4(x) .

(31)

where the functions ϕ3(x) and ϕ4(x) are defined as in Lemma 2.3(3) and 2.3(4).
Therefore, inequality (24) holds for all a, b > 0 with a 6= b if and only if α3 ≤ 2/3 and β3 ≥ π/4 follows

from (28) and (30) together with Lemma 2.3(3), inequality (25) holds for all a, b > 0 with a 6= b if and
only if α4 ≤ 0 and β4 ≥ 1/3 follows from (29) and (31) together with Lemma 2.3(4).

Theorem 3.3 The double inequalities

α5Q(a, b) + (1− α5)V (a, b) < NQG(a, b) < β5Q(a, b) + (1− β5)V (a, b) . (32)

holds for all a, b > 0 with a 6= b if and only if α5 ≤ 0 and β5 ≥ 1/2.
Proof.We clearly see that inequalities (32) can be rewritten as

α5 <
NQG(a, b)− V (a, b)
Q(a, b)− V (a, b) < β5 . (33)

Since both the geometric mean G(a, b) and quadratic mean Q(a, b) are symmetric and homogeneous
of degree 1, without loss of generality, we assume that a > b > 0. Let u = (a− b)/

√
2ab ∈ (0,+∞). Then

from (4) and (33) together with Q(a, b) = G(a, b)
√

1 + u2 we have

α5 <

1
2

[√
1 + u2 + sinh−1(u)

u

]
− u

sinh−1(u)√
1 + u2 − u

sinh−1(u)
< β5 . (34)

Let x = sinh−1(u). Then x ∈ (0,+∞),

1
2

[√
1 + u2 + sinh−1(u)

u

]
− u

sinh−1(u)√
1 + u2 − u

sinh−1(u)

= 1− 1
2

x sinh(2x)− 2x2

x sinh(2x)− cosh(2x) + 1 = 1− 1
2ϕ5(x) .

(35)

where the functions ϕ5(x) is defined as in Lemma 2.4.
Therefore, inequality (32) holds for all a, b > 0 with a 6= b if and only if α5 ≤ 0 and β5 ≥ 1/2 follows

from (34) and (35) together with Lemma 2.4.
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Theorem 3.4 The double inequalities

α6Q(a, b) + (1− α6)U(a, b) < NGQ(a, b) < β6Q(a, b) + (1− β6)U(a, b) . (36)

holds for all a, b > 0 with a 6= b if and only if α6 ≤ 0, β6 ≥ (π2 − 8)/[4(π − 2)] = 0.4094 · · · .
Proof.We clearly see that inequalities (36) can be rewritten as

α6 <
NGQ(a, b)− U(a, b)
Q(a, b)− U(a, b) < β6 . (37)

Since both the geometric mean G(a, b) and quadratic mean Q(a, b) are symmetric and homogeneous
of degree 1, without loss of generality, we assume that a > b > 0. Let u = (a− b)/

√
2ab ∈ (0,+∞). Then

from (5) and (36) together with Q(a, b) = G(a, b)
√

1 + u2 we have

α6 <

1
2

[
1 + (1 + u2) tan−1(u)

u

]
− u

tan−1(u)√
1 + u2 − u

tan−1(u)
< β6 . (38)

Let x = tan−1(u). Then x ∈ (0, π/2),

1
2

[
1 + (1 + u2) tan−1(u)

u

]
− u

tan−1(u)√
1 + u2 − u

tan−1(u)
. = 1

2ϕ6(x), (39)

where the function ϕ6(x) is defined as in Lemma 2.5.
Therefore, inequality (36) holds for all a, b > 0 with a 6= b if and only if α6 ≤ 0 and β6 ≥ (π2 −

8)/[4(π − 2)] = 0.4094 · · · follows from (37)-(39) together with Lemma 2.5.

4 Applications

In this section, we will establish several sharp inequalities involving the hyperbolic, inverse hyperbolic,
trigonometric and inverse trigonometric functions by use of Theorems 3.1-3.4.

From (3) we clearly see that

NQG(a, b) = 1
2

[
Q(a, b) + G2(a, b)

V (a, b)

]
, NGQ(a, b) = 1

2

[
G(a, b) + Q2(a, b)

U(a, b)

]
. (40)

Let a > b and x = sinh−1 ( a−b√
2ab

)
∈ (0,∞). Then simple computations lead to

Q(a, b)
G(a, b) = cosh(x), V (a, b)

G(a, b) = sinh(x)
x

,
U(a, b)
G(a, b) = sinh(x)

tan−1 [ sinh(x)
] . (41)

Theorems 3.1-3.4 and (40)-(41) lead to Theorem 4.1.

Theorem 4.1 The double inequalities

2α1 cosh(x) + 2(1− α1) < cosh(x) + x

sinh(x) < 2β1 cosh(x) + 2(1− β1),

1
2
[
α2 cosh(x) + (1− α2)

]
< 1− 2x

sinh(2x) + 2x <
1
2
[
β2 cosh(x) + (1− β2)

]
,

2α3 cosh(x) + (1− 2α3) < cosh(x) coth(x) tan−1 [ sinh(x)
]
< 2β3 cosh(x) + (1− 2β3),

α4 cosh(x) + (1− α4)
2 cosh(x) <

1
1 + cosh(x) coth(x) tan−1 [ sinh(x)

] < β4 cosh(x) + (1− β4)
2 cosh(x) ,
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2α5 cosh(x) + 2(1− α5) sinh(x)
x

< cosh(x) + x

sinh(x) < 2β5 cosh(x) + 2(1− β5) sinh(x)
x

,

2α6 cosh(x) + 2(1− α6) sinh(x)
tan−1 [ sinh(x)

] < 1 + cosh(x) coth(x) tan−1 [ sinh(x)
]

< 2β6 cosh(x) + 2(1− β6) sinh(x)
tan−1 [ sinh(x)

] .
hold for all x > 0 if and only if α1 ≤ 1/3, β1 ≥ 1/2, α2 ≤ 0, β2 ≥ 2/3, α3 ≤ 2/3, β3 ≥ π/4, α4 ≤ 0,
β4 ≥ 1/3, α5 ≤ 0, β5 ≥ 1/2, α6 ≤ 0 and β6 ≥ (π2 − 8)/

[
4(π − 2)

]
.

Let a > b and x = tan−1 ( a−b√
2ab

)
∈ (0, π/2). Then it is not difficult to verify that

Q(a, b)
G(a, b) = sec(x), V (a, b)

G(a, b) = tan(x)
sinh−1 [ tan(x)

] , U(a, b)
G(a, b) = tan(x)

x
. (42)

From Theorems 3.1-3.4 and (40), (42) we get Theorem 4.2 immediately.

Theorem 4.2 The double inequalities

2α1 sec(x) + 2(1− α1) < sec(x) +
sinh−1 [ tan(x)

]
tan(x) < 2β1 sec(x) + 2(1− β1),

1
2
[
α2 + (1− α2) cos(x)

]
<

tan(x)
sec(x) tan(x) + sinh−1 [ tan(x)

] < 1
2
[
β2 + (1− β2) cos(x)

]
,

2α3 sec(x) + 2(1− α3) < 1 + 2x
sin(2x) < 2β3 sec(x) + 2(1− β3),

1
2
[
α4 + (1− α4) cos(x)

]
< 1− 2x

sin(2x) + 2x <
1
2
[
β4 + (1− β4) cos(x)

]
,

2α5 sec(x)+2(1−α5) tan(x)
sinh−1 [ tan(x)

] < sec(x)+
sinh−1 [ tan(x)

]
tan(x) < 2β5 sec(x)+2(1−β5) tan(x)

sinh−1 [ tan(x)
] ,

2α6 sec(x) + 2(1− α6) tan(x)
x

< 1 + 2x
sin(2x) < 2β6 sec(x) + 2(1− β6) tan(x)

x
.

hold for all x ∈ (0, π/2) if and only if α1 ≤ 1/3, β1 ≥ 1/2, α2 ≤ 0, β2 ≥ 2/3, α3 ≤ 2/3, β3 ≥ π/4, α4 ≤ 0,
β4 ≥ 1/3, α5 ≤ 0, β5 ≥ 1/2, α6 ≤ 0 and β6 ≥ (π2 − 8)/

[
4(π − 2)

]
.
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