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1   Introduction 

Multiobjective optimization is applied in various fields of science, engineering, and economics when 
decisions involve two or more conflicting objectives. For example, a pharmaceutical company may wish 
to determine a dose for a new drug that would maximize its therapeutic benefits while minimizing its 
deleterious side effects. The result would be a multiobjective optimization problem. In many other 
situations, however, a decision may not be adequately characterized by such standard criteria as Pareto 
optimality, goal programming, or lexicographic maximization. For this reason, cone-ordered 
maximization was developed, of which the previously mentioned criteria are special cases. Early results 
for cone-ordered maximizations, formulated with various degrees of abstraction, include optimality 
conditions by Hurwicz [1], Neustadt [2], Ritter [3], Craven [4], Yu [5] Borwein [6], Christotspeit [7], and 
Corley [8], as well as a duality theory by Corley [9]. Such results are difficult to implement, however. 
For this reason, scalarization is the method of choice for actually obtaining a numerical solution to a 
cone-ordered maximization.  

A scalarization is an optimization problem with a single scalar objective function for which an optimal 
solution solves the cone-ordered problem. Examples are the scalarizations of Borwein [6] and Jahn [10] 
in terms of the dual cone and that of Soland [11] for Pareto maximization involving both the dual cone 
and aspiration levels for the individual objective functions. References [12-18] consolidate the theory and 
solution techniques for cone-ordered maximizations. However, specific results for polyhedral cones are 
scarce. For such cones, Yu [5] proposes a specialized scalarization based on finding cone extreme points. 
Sawaragi et al. [1985] reduce the problem to finding Pareto efficient points of a set in the objective 
function’s image space. More recently, for example, Gutierrez, et al. [19] define a scalarization by 
perturbing the same matrix.  

We consider a decision problem with an n-dimensional objective function, where the optimization 
criterion is maximization with respect to a partial order induced by a pointed convex cone in .nR  The 
purpose here is to present scalarizations for such problems in general, with the emphasis on polyhedral 
cones. Methods are also developed for finding dual vectors of a polyhedral cone as required for scalarized 
objective functions. One such approach involves linear programming. The paper is organized as follows. 
In Section 2 the requisite preliminaries concerning cones are established, while the notion of cone-
ordered maximization is defined in Section 3. In Section 4 various scalarizations are presented. Section 5 
then addresses the problem of obtaining the required dual vectors for polyhedral cones. Finally, in 
Section 6, instructive examples involving polyhedral cones are solved by scalarization. Conclusions are 
offered in Section 7. 
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2   Cone Preliminaries 

Notationally, any vector = ∈1( ,..., )m
mx x Rx  or = ∈1( ,..., )n

ny y Ry  will be considered a column vector, 
and 0  will be a column vector of zeros of appropriate dimension. A nonempty set ⊂ nC R  is a cone if 
λ ∈Cy  for all ∈Cy and all λ > 0.  A cone C  is said to be nontrivial if ≠ { },C 0  pointed if 

=−∩ { },C C 0  and convex if λ λ ∈+
1 1 2 2 Cy y  for all ∈

1 2
, Cy y  and all λ λ >

1 2
, 0.  C  is a nontrivial, 

closed, convex, polyhedral cone if and only if there exists a finite nonempty set of nonzero vectors 

= ⊂1 }{ ,..., r
nG Rb b  that conically span ;C  i.e., α α

=

≥ ==
  
 
  
∑

1
: 0, 1, ..., .

r

j jj
j

j rC b  In this paper, any 

cone C  will be assumed nontrivial, pointed, and convex, so any polyhedral cone C  here will be 
pointed unless otherwise stated. Pointedness is necessary in the next section for defining a partial order 
in terms of .C  

In general a cone does not contain { },0  but a polyhedral cone generated by = 1 }{ ,..., rG b b  does. G  
is called the set of generators for ,C  which is simply the conical hull of .G  If no subset of G  conically 
spans ,C  the elements of G  are said to be conically independent. In other words, no jb  can be 
expressed as a conical combination of the other members of .G  If 1,..., rb b  are conically independent, 
they are called basic generators, or extreme directions, for the polyhedral cone .C  They represent a 
minimal generating set for the cone and are unique within a positive scaling. In nR  the number r  of 
basic generators for a polyhedral cone may be less than, equal to, or greater than .n   

Supplementing the results in [20] and [21], a consequence of the polyhedral cones here being pointed is 
next established.  
Definition 1. The nonzero vectors 1,..., rb b in nR  are said to be conically homogeneous if and only if 

the equation α
=

=∑
1

r

j j
j

0b  for scalars α ≥ =0, 1, ...,j j r  implies that α = =0, 1, ..., .j j r  

Theorem 2. Let 1,..., rb b  be generators for a polyhedral cone C  in ,nR  which is not necessarily 
pointed. Then C is pointed if and only if 1,..., rb b  are conically homogeneous. 
Proof. Consider the generators 1,..., rb b  for .C  To prove that pointedness implies conical 
homogeneity, suppose that 1,..., rb b  are not conically homogeneous. Then there exist scalars 

α ≥ =0, 1, ..., ,j j r  with α > 0k  for some k  and α
=

=∑
1

.
r

j j
j

0b  Write 

 α α
=
≠

= −∑
1

.
r

j kj k
j
j k

b b   (1) 

Thus the nonzero right side of (1) is in − ,C  while the left side in .C  Hence C  cannot be pointed. 

Then there exists a nonzero α
=
∑

1

r

j j
j

b  in C  with α ≥ =0, 1, ..., ,j j r  and some α > 0k  such that 

α
=
∑

1

r

j j
j

b  is in − .C  Since − −1,..., rb b  are obviously generators for − ,C  it follows that there exists a 

nonzero β
=

−∑
1

( )
r

j j
j

b  in −C with β ≥ =0, 1, ..., ,j j r  and some β > 0l  such that α β
= =

= −∑ ∑
1 1

( ).
r r

j jj j
j j

b b  

Hence α β
=

+ =∑
1

,( )
r

j j j
j

0b  with α β+ ≥( ) 0j j  but not all zero. Thus 1,..., rb b  are not conically 

homogeneous, and the result follows. ■ 
Conical independence is not needed in Theorem 2. However, basic generators are conically 

independent by definition. From Theorem 2, the assumption that any polyhedral cone C  here be 
pointed is equivalent to its generators 1,..., rb b  being assumed conically homogenous. Any generators 

1,..., rb b  used in this paper will be assumed basic, though the results apply to any conically 

152 Journal of Advances in Applied Mathematics, Vol. 2, No. 3, July 2017

JAAM Copyright © 2017 Isaac Scientific Publishing



homogenous generators. The following immediate corollary of Theorem 2 illustrates a similarity that 
basic generators for a pointed polyhedral cone share with basis vectors for ,nR  which are linearly 
independent and hence linearly homogenous for α j  not necessarily all nonnegative. 
Corollary 3. Let 1,..., rb b  be basic generators for a pointed polyhedral cone C  in .nR  Then 

1,..., rb b  are both conically independent and conically homogeneous. 
In addition to the generator set approach for representing a polyhedral cone ,C  there is also a 

generator matrix approach. As noted in [13], for any polyhedral cone C  in nR  there exists an 
×  t n matrix A  with kernel ∈ = =:{ } { }nRy A 0 0y  for which ∈= ≥:{ }.nC Ry A 0y  The condition 

that the kernel of A  be { }0  has a similar role to the condition that the generators be conically 
homogeneous. Indeed, it is easily shown that C  is pointed if and only of the kernel of A  is { }.0  The 
generator-set representation and the generator-matrix representation for polyhedral cones are formally 
shown to be equivalent in the Farkas-Minkowski-Weyl theorem of [22]. In the former representation, a 
polyhedral cone C  is the conical hull of its generators 1 .,..., rb b  In the latter, C  is the intersection of 
t  half-spaces defined by ≥ .Ay 0  However, the generator set approach may be the more intuitive one 
for modeling a polyhedral cone C  in a higher dimensional multiple objective problem. Generator sets 
appear more amenable to a trial and error process for specifying an appropriate ordering cone than do 
generator matrices.  

The notion of a dual cone is next defined.  
Definition 4. Let C  be a cone in .nR  The dual cone of C  is defined to be the set 

=

= ∈ = = ∈
  ≥ ∀ 
  

∑T
1

1
1 \ { },..., ) : 0, ) .( ( ,...,

n

n j j
j

n
nd d d y y y CR 0d d y y  

A vector d  in the dual cone of C that further satisfies >T 0d y  for all ∈ \ { }C 0y  is said to be a 
positive dual vector on .C  Write { }+ ∈ == ∈> ∀T

1 \ { }: 0, ,..., ) .( n
n y CC R y 0d d y y  The following two 

results are stated for future reference. Result 5 is proved in [6] for more general spaces than ,nR  while 
Result 6 is immediate. 
Result 5. For any closed cone C  in nR  there exists +

∈ .Cd  
Result 6. Let C  be a polyhedral cone in nR  with basic generators 1 ,,..., rb b  and let ∈ .nRd  Then 

+
∈ Cd  if and only if > =T 0, 1,..., .i i rd b  

3   Cone Maximization 

Any pointed convex cone C  in nR  determines a partial order ≤
C

 on nR  as follows. For any 
∈1 2 ,, nRy y  we say that ≤1 2C

y y  (or ≥2 1)C
y y  if − ∈2 1 .Cy y  Write <1 2C

y y (or >2 1)C
y y  if 

≤1 2C
y y  and ≠1 2,y y  i.e., if ∈−2 1 \ { }.Cy y 0  In particular, we say that 2y  dominates 1y  if 

<1 2.C
y y  A vector ∈ ⊂* nY Ry  is said to be nondominated on Y  if there is no ∈Yy  such that 

<* ,
C

y y  or equivalently, that + =∩ *)( { }.CY y 0  Define the set max
C
Y  as the set containing all 

nondominated vectors in Y  with respect to the cone .C  Consider now the objective functions 
⊂ → =1: , 1,..., ,m

if X R R i n  and the column vector = 1( ) ( ), ..., ( )( ).nf f fx x x  For the cone ⊂ ,nC R  write 
the cone maximization with respect to C  of ( )f x  on the feasible set X  as 

 
∈

1( ( ), ..., ( ))maximize  

 
nf fC

subject to
X

x x

x
  (2) 

Problem (2) involves finding ⊂∈* ,mX Rx  such that ∈( *) ( )maxCf f Xx  for 
∈

= ∪( ) ( ) .{ }
X

f fX
x

x  Such 

an *x  is called a C-efficient point (or just efficient point) for problem (2), and the set of 
1( ( *), ..., ( *))nf fx x  for all efficient points *x  is called the C-efficient frontier (or just efficient frontier) of 

problem (2). The set of efficient points for (2) is sometimes written [ ( ), ].E f X C  When X  is convex, the 
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function ( )f x  is said to be C-concave on X  if and only if λ λ λ λ≥ ++ − −1 2 1 2[ (1 ) ] ( ) (1 ) ( )
C

f f fx x x x  for 
all ∈1 2, Xx x  and λ ∈ .[0,1]  

A more restrictive type of efficient point is defined in [6] using tangent cones. Let ⊂ nY R  and 
∈0 ,Yy  the closure of .Y  The tangent cone 0 )( ,T Y y  to Y  at Y  is the set of limits of the form 

λ
→∞

= − 0(lim ),n nn
 y y y  where λ λ1 2, ,...  is sequence of non-negative real numbers and 1 2, ,...y y  is a 

sequence in Y  with limit 0.y  Then a C-efficient point ∈* Xx  is a proper C-efficient point (or just 
proper efficient point) for problem (2) if − =∩ ( *)][ ( ) , { }fC T f A C x 0  and an improper efficient point 
otherwise. Geometrically, an improper efficient point *x  is an efficient point for which ( *)f x  can be 
approached in −( )f A C  from directions within + ( *).C f x  Operationally, improper efficient points are 
those efficient points that cannot be obtained via scalarization for some +∈Cd  in problem (5) of the 
next section. 

To illustrate proper and improper efficient points for problem (2) with = = 2,m n  let →2 2:f R R  be 
the identity function =1 2 1 2( , ) ( , ),f x x x x  let = + ≤ ≥ ≥2 2

1 2 1 2 1 2
{( , ) : 1, 0, 0},X x x x x x x  and let 

= ≥ ≥
1 2 2 1 2

{( , ) : 0, }.C x x x x x  Applying the definition of ( )max
C

f X  in 2R  and using the fact that 
∈* [ ( ), ]E f X Cx  is equivalent to the condition + =∩ ( *)( ) { },[ ]f X C f x 0  it readily follows that 

= + = ≥ ≥2 2
1 2 1 2 1 2

[ ( ), ] {( , ) : 1, 0, 0}.E f X C x x x x x x  The only improper efficient point is (0,1).  
As a special case of problem (2), let C  be the polyhedral cone { }= ≥ =

1
( ,..., ) : 0, 1,..., ,

n iP y y y i n  
which is termed the Pareto cone. A set of basic generators is the standard orthonormal basis 

= =1 (1,0,..., 0),..., (0,0,...,1)ne e  for 2,R  so +∈ Pd  if and only if > =0, 1,..., .id i n  For the cone ,P  
problem (2) becomes the Pareto maximization problem 

 
∈

1( ( ), ..., ( ))maximize 

        
         

nf fP

subject to
X

x x

x
  (3) 

A feasible point ∈* Xx is a Pareto maximum, or Pareto efficient point, of problem (3) if and only if 
there is no ∈ Xx  such that <1 1( ( *), ..., ( *)) ( ( ), ..., ( )).n P nf f f fx x x x  In other words, ∈* Xx  is Pareto 
efficient if and only if there is no ∈Xx  for which =≤( *) ( ), 1, ..., ,i if f i nx x  and <( *) ( )k kf fx x  for some 
.k  In the Pareto case, an improper efficient point is an efficient point for which the marginal gain for 

some objective function ,if  relative to the marginal loss in all the other objective functions, is 
unbounded from above [23]. 

Consider now problem (2), where C  is a polyhedral cone. Then (2) can be transformed into a Pareto 
maximization problem in tR  if the ×t n  matrix A  with kernel { }0  is known for which 

∈= ≥:{ }.nC Ry A 0y  In this case, problem (2) can be written as 

 
∈

( )maximize 
    
      

fP
subject to

X

A x

x
  (4) 

from a result in [13]. To see (4), let ∈* .Xx  Then *x  does not solve (2) if and only if there exists 
∈ˆ Xx  such that > .ˆ( ) ( *)Cf fx x  The kernel of A  is { },0  so ∈ ⊂− \ { }ˆ( ) ( *) nC Rf f 0x x  if and only 

if ∈ ⊂−[ \ { }ˆ( ) ( *)] ,tP Rf fA 0x x  i.e., >ˆ( ) ( *).Pf fA Ax x  Thus *x  does not solve (4) if and only if *x  
does not solve (2). It follows that when a generator matrix A  is given, then any method for solving (3) 
can be used to obtain a solution for (4) and hence (2). 

4   Scalarizations 

A scalarization of problem (2) is an optimization problem with a real-valued objective function, the 
solutions of which also solve (2). A scalarization may involve auxiliary parameters, variables, functions, 
and constraints to achieve this goal. Ideally, a scalarization would be equivalent to problem (2) in the 
sense that the scalarization would yield all solutions and only solutions for (2). Thus it is desirable that 
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every solution to (2) can be obtained with some combination of these auxiliary entities. This goal may 
only be possible if they are varied in a scalarization to obtain different solutions to (2). However, for 
some scalarizations below, obtaining all efficient points to (2) is not possible.  

Scalarization for cone-ordered optimization, including the Pareto case, has been studied extensively. 
For example, see [23-39], which present scalarizations of varying degrees of abstraction. Few involve 
polyhedral cones. In this paper we present generalizations of the two fundamental scalarizations for 
cone-ordered maximization as given in Result 7 and Corollary 11, then specialize them to polyhedral 
cones. In addition, Theorem 14 is apparently new.  
Result 7. Let C  be a closed cone in ,nR  and let +∈ .Cd  If *x  solves the scalar maximization 
problem 

 
∈

Tmaximize 
 

( )
subject to

X

fd

x

x
  (5) 

then *x  is a proper efficient point for problem (2). In addition, assume that X  is a convex set and f  
is C-concave on .X  Then *x  is a proper efficient point for problem (2) if and only if *x  solves 
problem (5) for some +∈ .Cd  

Result 7 is established in [6]. The condition that C  be closed in Result 7, as well as in Theorem 10 
and Corollary 11, is significant since (5) is proved using convex separation theorems for closed cones 
that require that +∈ .Cd  A counterexample is the lexicographic cone L  in nR  [13], which is 
nontrivial, pointed, and convex. However, L  is not closed and + ∅= .L  Result 7 generalizes the 
weighted sum method for Pareto optimization [20]. We apply it to polyhedral cones in the following two 
corollaries. However, note that the generators == 1 .., ,, ,ii i neb  for the Pareto cone in nR  do not 
satisfy the condition > =T 0, , 1,..., ,

ji i j rb b  of Corollary 8 below, which follows from Results 6 and 7.  
Corollary 8. Let C  be a polyhedral cone in Result 7. Then the conclusions of Result 7 hold if C  has 
basic generators 1,..., rb b  and if the vector ∈ nRd  satisfies > =T 0, 1,..., .i i rd b  In particular, if 

> =T 0, 1,..., ,k j j rb b  for some ,kb  i.e., if the angle in nR  between kb  and the other generators is less 

than π
2

,  then +∈ .k Cb  Similarly, if > =T 0, , 1,..., ,i j i j rb b  then +∈ =, 1,..., .i C i rb  

Result 7 can also be applied to a polyhedral cone specified by its generator matrix .A  Since 
{ }+ = > = ⊂1 )( ,..., : 0, 1,..., ,l i

tP d d d Ri t  the next result follows immediately by solving the Pareto 
problem (4) by Result (7).  
Corollary 9. Let the ×t n  generator matrix A  for the polyhedral cone C  have row vectors 

1,..., ,ta a  thereby specifying the objective function of (4) as ∈1 ( ) ( ))( ,..., .ttf f Ra x a x  For any 
= ∈1 )( ,..., t

td d Rd  with > =0, 1,..., ,id i t  if *x  solves the scalar maximization problem 

 
=

∈

∑
1

( )maximize 

 

i i
i

t
fd

subject to
X

a x

x
  (6) 

then *x  is a proper efficient point for problem (2). 

Next, Theorem 10 completely characterizes cone maximization in terms of n-dimensional parameter 
vectors +

∈ Cd  and ε ∈ .nR  It generalizes results in [11] and [15]. 
Theorem 10. Let C  be a closed cone in nR  and let any +∈Cd  be given. Then *x  is an efficient 
point for problem (2) if and only if there exists ε ∈ nR  for which *x  solves the scalar maximization 
problem 

 
ε≥

∈

T ( )

( )

maximize
  

 

 

C

subject to

X

f

f

d x

x
x

  (7) 
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Proof. To prove the necessity, suppose that *x  solves problem (2). Set ε = *)(f x  in problem (7) so 
that *x  is feasible to it. If *x  does not solve (7), then there exists ∈� Xx  satisfying ≥� *)( ) (

C
f fx x  

such that >�T T ( *).( )f fx xd d  But then − ≠� *( ) ( )f fx x 0  and so >� *)( ) (
C

f fx x  in contradiction to the 
assumption that *x  solves problem (2). It follows that if *x  solves problem (2), then *x  solves 
problem (6) for ε = *).(f x  

To prove the sufficiency, let ε ∈ nR  and assume that *x  solves problem (7). If *x  is not an 
efficient point for problem (2), then there exists ∈ˆ Xx  such that >ˆ( ) ( *).

C
f fx x  But since *x  is 

feasible to problem (7) and satisfies ε≥( *)
C

f x , then ε≥ˆ( )
C

f x  and x̂  is also feasible to problem (7). 
Moreover, ∈− \ { },ˆ( ) ( *) Cf f 0x x  so >T T ( *)ˆ( )f fx xd d  in contradiction to the assumption that *x  
solves (7). It follows that if *x  solves problem (7) for any ε ∈ nR , then *x  solves problem (2). 
Choose any such ε ∈ nR  to complete the proof. ■

The following corollary follows immediately from the above proof and states Theorem 10 as it is used. 
Corollary 11. Let C  be a closed cone in nR  and let +∈Cd  be given. If *x  solves problem (7) for 
any ε ∈ nR , then *x  is an efficient point for problem (2). Moreover, for this given +∈ ,Cd  if *x  is 
an efficient point for (2), then *x  can be obtained from (7) for some ε ∈ nR . 

Note that an efficient point obtained via Theorem 10 or Corollary 11 need not be proper, in contrast 
to one obtained via Result 7, Corollary 8, and Corollary 9. This fact will be demonstrated in Example 
16 of the next section. Thus for any fixed +∈ ,Cd  the vector parameter ε  of Corollary 11 can be 
varied to obtain at least theoretically the entire efficient frontier of problem (2). In addition, the 
parameters d  and ε  together can further specify the decision maker’s criterion than can the cone C  
alone. For example, different +∈Cd  weight the importance of the objective functions 1( ), ..., ( )nf fx x  
differently with respect to each other. In addition, the constraint ε≥( )

C
f x  in problem (7) may reduce 

the number of choices. This constraint can be interpreted as the decision maker seeking a decision *x  
for which the vector objective function ( *) f x  achieves at least the vector aspiration level ε  with 
regard to ≥

C
. On the other hand, if any εi  is sufficiently large in problem (7), no solution may exist, in 

which case the decision maker must reduce this aspiration level. Moreover, if all εi  are sufficiently 
small, the constraint ε≥( )

C
f x  would not actually restrict a solution to (7). 

Corollary 11 has obvious analogs to Corollaries 8 and 9. 
Corollary 12. Let C  be a polyhedral cone with basic generators 1 .,..., rb b  With +∈Cd  as specified 
in Corollary 8 under the conditions there for 1 ,,..., rb b  for any ε ∈ nR  if *x  solves problem (7), then 

*x  is an efficient point for problem (2).  
Corollary 13. Let the ×t n  generator matrix A  for the polyhedral cone C have row vectors 

1,..., .ta a  For any = ∈1( ,..., ) t
td d Rd  with > =0, 1,..., ,id i t  if *x  solves the scalar maximization

problem 

ε

=

∈

≥ =

∑
1

( )maximize 

 
( )) , 1,...,

i

i i
i

i

t
fd

subject to
f

X

i t

a x

a x

x

(8) 

for any ε = 1, ,, ...i i , tn hen x * is an efficient point for problem (2). 
A related result for basic generators is not a consequence of Corollary 11. Theorem 14 holds for the 

Pareto cone, among others. 
Theorem 14. Let C  be a polyhedral cone in nR  with basic generator 1,..., rb b  satisfying 

≥ =T 0, , 1,..., .i j i j rb b  For any ε εε = ∈1 )( ,..., r
rR  if *x  solves 
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ε

=

≥

∈

=

∑ T

T

1
maximize ( )

 

( )

 

, 1,...,

r

i
i

ii

f

subject to

f

X

i r

xb

xb
x

  (9) 

then *x  is an efficient point for problem (2). 
Proof. To prove the contrapositive, assume that ∈* Xx  is not an efficient point for problem (2). Then 

there exists ∈ˆ Xx  such that ∈− \ { }.ˆ( ) ( *) Cf f 0x x  Hence α
=

− = ∑
1

ˆ( ) ( *)
r

j j
j

f fx x b  with 

α ≥ =0, 1,..., ,j j r  and some α > 0.k  By assumption, ≥ =T 0, , 1,..., ,i j i j rb b  from which 

α
=

  = − ≥ =∑ TT

1

ˆ( ) ( *) 0, 1,..., ,
r

j j
j

i if f i rx xb b b  and α
=

  == − >∑T T

1

ˆ( ) ( *) 0.
r

jk k j
j

f fb x x b b  Thus 

 
= = =

  =  −− >∑ ∑ ∑T T T

1 1 1

ˆ( ) ( *)ˆ( ) ( *) 0
r r r

i i i
i i i

f ff f x xx xb b b   (10) 

Next set ε = =T ( *) 1, ,..., ,i i f i rxb  in problem (9) so that from equation (10), ∈ˆ Xx  is feasible to (9). It 
now follows from equation (10) that ∈* Xx  does not solve problem (9). Thus if ∈* Xx  is not an 
efficient point for (2), then there exist ε = 1,..., ,,i i r  for which ∈* Xx  is not a solution to problem (9); 
and the proof is complete.■ 

5   Obtaining Vectors d +∈C  

In the previous section, for the scalarizations of Result 7, Corollary 8, and Theorem 10, as well as those 
of Corollary 11, and Corollary 12, a vector +∈Cd  is needed to compute a solution to problem (2) for a 
polyhedral cone. Corollaries 9 and 13 similarly require a vector +∈ Pd , but the condition there reduces 
to > ,0d  which presents no difficulty. Throughout this section, C  will be a polyhedral cone in nR  
described by either basic generators ∈1,..., n

r Rb b  or an ×nt  generator matrix A  with kernel { }.0   
We first discuss how to determine +C  when A  is given. Recall that ∈= ≥:{ }.nC Ry A 0y  It 

follows that the transposes of the nonzero row vectors ∈1,..., n
t Ra a  of A  are in the dual cone ofC  

by definition, as is any conical combination α α
=

≥ == ∑ T

1
0, 1, ..., .,j jj

j

t
j tad  If α > =0, 1, ..., ,j j t  then 

+∈ ;Cd  otherwise the kernel of A  is not { }.0  Hence, given the matrix ,A  multiple vectors +∈Cd  

can be computed from α α
=

≥ == ∑ T

1
0, 1, ..., .,j jj

j

t
j tad  using different sets of positive α .j  However, not all 

+∈Cd  have this form. As a counterexample in 2 ,R  consider the generator matrix −
=

−

 
 
 

1 1
0 1

A  with 

kernel { }.0  For this example, obvious basic generators are the column vectors =1 (1,1)b  and 
= −2 (0, 1).b  Then the column vector −= (2, 1)d  satisfies =>T 1,2,0,i id b  and is thus in +C  from 

Result 6. However, there do not exist α α >1 2 0,  such that α α= +
− −

     
     
     

1 2

2 1 0
1 1 1

.   

We next consider the case where C  is given in terms of basic generators ∈1 .,..., n
r Rb b  For such a 

cone, we present an approach resembling the phase-one method of linear programming [22] to obtain 
vectors +∈Cd  to use in scalarizations (5) and (7), and hence their corollaries. A preliminary result is 
needed. 
Result 15. If ∈ nRd  satisfies 
 ≥ =T 1, 1,...,i i rd b   (11) 
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then +∈ .Cd  Moreover, there exists a +∈Cd  satisfying (11). 
Proof. Suppose ∈ nRd  satisfies (11). Then immediately > =T ,0 1,..., ,i i rd b  and so +∈Cd  from 
Result 6. To show there exists d  satisfying (11), note that there exists a +∈ˆ Cd  from Result 6 
satisfying > =T ,ˆ 0 1,..., .i i rd b  Let θ

=
= >T

1,...,
 0ˆmin .ii r
d b  Then θ≥T , i = 1,...,r,ˆ

id b  from which 

θ
≥ >

T

, i = 1,...,r. 1 0
ˆ

i
d b  Thus 

θ
+∈=

ˆ
Cdd  is the required vector. ■ 

To formulate a linear programming problem for obtaining +∈ ,Cd  consider the ×n r  matrix 
  = 1,..., rB b b  with columns vectors 1 .,..., rb b  Let 1  denote the × 1r  column vector (1,...,1) and 

s  be an × 1r  column vector 1( ,..., )rs s  of surplus variables. Then inequality (11) can be expressed in 
terms of d  and s  as 

 −
≥

=TB 1d
0
s

s
  (12) 

where the inequality ≥ 0s  is interpreted componentwise. From Result 15, system (12) has a solution; 
and for any such solution ,( ),d s  then +∈ .Cd  To obtain this d  numerically, define an × 1r  column 
vector = 1( ,..., )rv vv  of artificial variables, and write the linear programming problem 

 

=

−
≥
+ =T

T 

 
, ,

minimize

,

z

subject to

B

d s v
1 v

v 1d
v 0
s

s

  (13) 

From the previous discussion, if there exists a ,d  together with = ,0v  and ≥ 0s  such that 
( , , )d s v  solves linear programming problem (13), then +∈ .Cd  Moreover, a solution to (13) always 
exists since there exists +∈ Cd  from Result 5. For any fixed +∈ˆ ,Cd  if *x  solves scalarization (5) or 
(7) with objective function Tˆ ( ),f xd  then *x  obviously solves either scalarization for 

θ
θ+∈ ∀

ˆ
 , > 0.Cd  Moreover, for θ

=
< = T

1,...,0 ˆmin ,
i

ii r
d b  there exist ≥ 0s  and 

θ
=

d̂d  such that , ,( )0d s  

solves problem (13). The preceding reasoning can be summarized as follows.  
Theorem 16. If d is part of a solution ( , , )0sd  to (13), then +∈ .Cd  Moreover, *x  is an efficient 

point for problem (2) obtained from scalarization (5) or (7) for some +∈ˆ Cd  if and only if *x  can be 
obtained for (2) from (5) or (7) using some d  in a solution ( , , )0sd  to (13). 

6   Examples 

Some examples are next presented to illustrate the results of Sections 4 and 5 for polyhedral cones. 
These examples indicate the application and usefulness of the results. Without a scalarization, any 
maximization with respect to a non-Pareto cone could be extremely difficult to solve analytically. When 
the cone is polyhedral, the process is somewhat simpler, though not trivial as shown by the examples. 
Theorem 14 is particularly useful for many polyhedral cones in practice. It does not require any 
knowledge of the set + ,C  which can be difficult to obtain. 
Example 17. Consider the cone-ordered maximization problem 

 

= +

+ ≤

≥

+1 2 1 2

1 2

1 2

max ( ) (3 , 2 )

 
2 3 6

, 0

C f x x x x

subject to
x x

x x

x

  (14) 
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where C  is generated by =1 ( )1,1b  and = −2 ( )1,1 .b  We solve problem (14) by scalarizations (5), (7) 
and (9). Set = + ≤ ≥1 2 1 2 1 2( , ) : 2 3 6; , 0 .{ }X x x x x x x  To use (5), we must find some += ∈

1 2
( , ) .d d Cd  

Since Result 6 requires that > =T 0, 1,..., ,i i rd b  it follows here that = + >T
1 21 0d dd b  and 

+ >= −T
2 1 2 0.d dd b  Hence + = − < <1 2 2 1 2:( , ){ }d d d d dC  for problem (14). A vector +∈ Cd  can also be 

obtained by solving linear programing problem (13), which becomes here 

 

=

+

− +

≥

+

− +

− +

=
=

1 2

1 2

1 2 1 2 1 2
1 2

1 1

2 2

1 2 1 2

    , , , , ,
 

0

minimize

, , ,

1
1

d d s s v v
subject to

d d

d d

z v v

s v
s v

s s v v

  (15) 

Then +∈ Cd  is the *d  in a solution * *( , , ).0d s  Solving linear programming problem (15) with the 
IBM CPLEX 12.5 (or any linear programming solver) yields = =1 20, 1d d  as one solution. In general, 
multiple extreme point solutions ( , , )0d s  of (13) can be obtained in CPLEX by using the alternate 
optima option. Then for any two optimal extreme points 1 1 2 2( , , ),( , , )0 0d ds s  and all λ <<0 1,  the 
vector λ λ ++ − ∈1 21 )( .Cd d  Using = (0,1)d  computed above and solving (14) by scalarization (5) gives 

 

+

+ ≤

≥

= 1 2

1 2

1 2

2

2 3 6

,

maximize z
 

0

 x x

x x

x x

subject to
  (16) 

whose solution =1 2( (0,2)),x x  is a proper efficient point for (14) from Result 7.  
For any +∈ ,Cd  scalarization (5) for problem (14) has a single constraint, other than the 

nonnegativity ones, and thus from the theory of linear programming [22] has a single basic variable. 
Thus in (16) 1x  and 2x  cannot both be positive unless there are alternate nonbasic solutions, which 
there are not. Hence, the only candidates 1 2)( ,x x  for being solutions and proper efficient points for (12) 
are ,(0 2),  (3,0),  or ,(0 0).  Of course, ,(0 2)  was obtained above, and (3,0)  could be similarly obtained 
for = =

21 1, 2.dd  On the other hand, it can be easily shown that (0,0)  cannot solve (5) for any 
+∈= 1 2( , ) .Cd dd  Now note that X  is a convex set in problem (12). Moreover, f  is linear in both its 

objective functions and is therefore C-concave on a convex .X  From Result 7, *x  is a proper efficient 
point for problem (14) if and only if *x  solves problem (5) for some +∈ .Cd  Thus any efficient point 
for (14) besides ,(0 2) or (3,0)  must be improper. We now find one.  

Since =1 ( )1,1b  and −=2 ( )1,1b  satisfy the hypotheses of Theorem 14, we can solve problem (12) by 
scalarization (9), which yields 

 
ε
ε

= +

+

− +

+ ≤

≥

≥
≥

1 2

1 2 1

1 2 2

1 2

1 2

 z 2 4

  
4 3

2

2 3 6

,

maximize

0

x x

subject to
x x

x x

x x

x x

  (17) 

The solution to the linear programming problem (17) is readily obtained to be =1 2)( (0,2),x x  for 
ε ε =1 2 )( 1,1, ( )  and =1 2 )( (3,0),x x  for ε ε −=1 2 )( 10, 10, ( ).  However, for ε ε −=1 2 )( 9, 8), (  the solution is 

=1 2
3

2
)( ,1( ),,x x  which must be an improper efficient point as noted above since it could not be 

obtained by scalarization (5). 
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Finally, we solve (14) by scalarization (7). Again let +∈= (0,1) Cd  to yield 

 ε ε≥

= +

+ +

+ ≤

≥

1 2

1 2 1 2 1 2

1 2

1 2

maximize z 2

  
(3 2

2 3 6

, 0

 

, ) ( , )
C

x x

subject to
x x x x

x x

x x

  (18) 

The constraint ε ε≥+ +1 2 1 2 1 2(3 2, ) ( , )
C

x x x x  cannot interpreted componentwise because of the cone 
order ≥ .

C
 To handle this constraint, write ε ε ∈+ +− −1 2 1 1 2 23 2 ) ,( ,x x x x C  which has basic generators 

=1 ( )1,1b  and = −2 ( ).1,1b  From the definition of the basic generators, it follows that for any ε ε1 2 )( ,  
and 1 2 )( ,x x  the point ε ε+ +− −1 2 1 1 2 23 2, )( x x x x  in C  can be written as a conical combination of 
the generators ( )1,1  and −( ),1,1  i.e., 
 α αε ε+ + −− − = +1 2 1 1 2 2 1 23 2 ) (1,1) ( 1,1)( ,x x x x   (19) 
for some α α ≥1 2 0.,  Next rewrite equation (19) componentwise as 

 
α α

α α

ε
ε

+

+

− = −
− = +

1 2 1 1 2

1 2 2 1 2

3

2

x x

x x
  (20) 

Replacing the first equation in (20) by the sum of both equations gives 

 
α

α α

ε ε
ε

+

+

− − = ≥
− = + ≥

1 2 1 2 1

1 2 2 1 2

4 3 2

2

0
0

x x

x x
  (21) 

Fix ε ε1 2( , ) . Then (21) is equivalent to restricting 1 2 )( ,x x  to satisfying (19); i.e., 

 
ε ε
ε

+

+

≥ +
≥

1 2 1 2

1 2 2

4 3

 2

x x

x x
  (22) 

In other words, for fixed ε ε1 2 )( ,  the point 1 2)( ,x x  satisfies (22) if and only if there exist α α ≥21 0,  
satisfying (19). Thus replacing ε ε≥+ +1 2 1 2 1 2(3 2, ) ( , )

C
x x x x  in (18) by (22) and solving scalarization (7) 

with = (0,1)d  yields 

 
ε ε
ε

= +

+

+

+ ≤

≥

≥ +
≥

1 2

1 2 1 2

1 2 2

1 2

1 2

maximize z 2

 
4 3

2

2 3 6

, 0

 x x

subject to
x x

x x

x x

x x

  (23) 

Setting ε ε =1 2 (1,1)( ),  and solving linear programming problem (23) gives the solution =1 2 )( (0,2),,x x  
while ε ε =1 2) (9,3)( ,  yields =1 2 )( (3,0).,x x  On the other hand, for ε ε =1 2) 4, 4( ( ),  there is no feasible 
solution to problem (23) 
Example 18. Now consider the cone-ordered maximization problem 

 

=

+ + ≤

+ =

≥

− + +

2 2 2
1 2 3

1 2 3

1 2 3

1 2 3 1 2 3 2 1 3

27

18

max ( ) ( 4 2 5 3 4 )

  

2 3

0

+
, ,

, + , C f x x x x x x x x x

subject to

x x x
x x x

x x x

x

  (24) 

where C  is generated by == = =1 2 3 4( 0,0), ( 0,1), (0 1,1), (0, 0)1, 1, , 1,b b b b  in 3R  for = > =4 3.r n  We 
set = + + ≤ + = ≥2 2 2

1 2 3 1 2 3 1 2 31 2 3 27 2 3 18{( , ) : ; + ; , , 0},X x x x x x x x x x x x x  and use Theorem 14 to write 
scalarization (9) for problem (24) as 
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ε
ε
ε

=

≥

≥

+ ≥

+

≥

≤

− + + + +

− +
− +

+
+ +

=

1 1 2 1 3 2 3 1 3

1 2 3 1

1 2 2 3 1 3 2

1 2 1 2 1 3 3
2 2 2

1 2 3

1 2 3

1 2 3

10

 

maximize z 4 2 8 6 8

 
4

3 4 4

2 3 4

27

2 3 18

, 0

+ +
+5

+
,

x x x x x x x x x

subject to
x x x

x x x x x x

x x x x x x

x x x

x x x

x x x

  (25) 

Let ε ε ε =1 2 2 3, 48, 96 .) ( )( , ,  For these values, problem (25) has a continuous (nonconcave) objective 
function on a closed, bounded, nonempty feasible region. It thus has a solution. The problem was solved 
with Mathematica using both the simulated annealing and Nelder-Mead methods, as well as with 
Excel’s generalized reduced gradient solver. In all cases, to three decimal places 

=1 2 3 100,2.7) 3. 56 129( , ( ,3 ), .x x x  was found to be the associated efficient point for problem (22). Other 
efficient points can be found by varying ε ε ε1 2 2)( , , .  
Example 19. Consider again the cone-ordered maximization problem (14) of Example 17. Now use the 

generator matrix 
 

=  
− 

1 1
1 1

A  of the polyhedral cone .C  Then scalarization (6) becomes 

 

+ +

+ ≤

≥

= + −1 1 2 2 1 2

1 2

1 2

maximize z 4 3 2

 
2 3 6

,

 ( ) ( )

0

x x x x

subject to
x x

x x

d d

  (26) 

We use += ∈(0,2) Cd  from = +T T
1 2a ad  as discussed in Section 5. Then (26) becomes 

 

+

+ ≤

≥

= 1 2

1 2

1 2

2 4

2 3 6

,

maximize z

 

0

 x x

x x

x x

subject to
  (27) 

Solving (27) by linear programming gives a solution (0,2). The solution (3,0) could be obtained with 
another .d  

7   Conclusions  

It is likely that most practical applications of cone-ordered maximization will involve polyhedral cones 
to model multiobjective decision criteria. These cones can be defined either by generator sets or by 
generator matrices. The former appears more intuitive for defining an appropriate cone for a model. A 
practitioner need only choose various generator sets by trial and error until an appropriate cone is 
determined. Regardless, all scalarizations presented here for polyhedral cones, except (9) of Theorem 14, 
require a dual vector +

∈ Cd  for the scalarized objective function. For this reason, approaches for 
obtaining these vectors were presented for both generator sets and generator matrices. In particular, for 
C  described by a generator set, a linear programming approach was presented for obtaining dual 
vectors +

∈ Cd  such that all efficient points for (2) calculated using scalarization (5) and (7) can 
theoretically be computed. Examples were given to illustrate the theory and reasoning involved in 
solving problems. 
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