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Abstract. In this paper the main proof complexity characteristics in two types of proof systems for a 
version of many valued propositional logic are investigated for some class of k-valued ( ≥ 3k ) 
tautologies. We consider a Hilbert style cut free system and a system, which is dual to resolution 
system, for many valued logic with implication, defined by Gödel, and negation, defined by permuting 
the truth values cyclically. For considered class of tautologies we obtain simultaneously optimal bounds 
for different proof complexity measures (asymptotically the same upper and lower bounds for each 
measures). 
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1   Introduction 

Many-valued logic (MVL) as a separate subject was created and developed first by Łukasiewicz [1]. 
Later on many others continued investigation in this area. In the earlier years of development, this 
caused some doubts about the usefulness of MVL. In the meantime, however, many interesting 
applications were found in such fields as logic, mathematics, hardware design, artificial intelligence and 
some other area soft information technologies, therefore the investigations in area of proof complexity 
for different systems of MVL are very important.  

In this paper the main proof complexity characteristics in two types of proof systems for a version of 
many valued propositional logic are investigated for some class of k-valued ( ≥ 3k ) tautologies. For 
many valued logic with implication, defined by Gödel, and negation, defined by permuting the truth 
values cyclically, we consider the “elimination” system, which is based on the determinative disjunctive 
normal form, introduced in [2,3], and a Hilbert style cut-free system, defined in [4]. We suggest some 
generalization for a family of 2-valued tautologies, which are known as “hard” for some proof systems of 
classical propositional logic tautologies. For introduced class of tautologies we obtain simultaneously 
optimal bounds for different proof complexity measures (asymptotically the same upper and lower 
bounds for each measures). 

Short presentation of main results only for one from mentioned systems was in [3]. 

2   Preliminaries 

Here we give some of well-known notions and notations in area of MVL. 

2.1   k-valued Logic 

Let kE  be the set  −
… 

− − 

1 k 20, , , ,1
k 1 k 1

. We use the well-known notions of propositional formula, 

which, defined as usual from k-valued propositional variables ( )≥, , 1ip q p i  with values from kE , may 
be also propositional constants, parentheses, and logical connectives ∧ ∨ ⊃ ¬, , ,  defined as follows: 

( )∨ = max ,p q p q ,
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( )∧ =    min ,p q p q , 

 
 ≤⊃ = 

>

1,   
,   

for p q
p q

q for p q
 

and cyclically permuting negation, defined as follow: 

( )( )( ) ( )¬ = − + −1 1 / 1p k p modk k . 

For negation we use also denotation p . 

For propositional variable p  and ( )δ = ≤ ≤ −
−

 0 1
k 1

i i k  we define additionally exponent-function 
δp  as p  with ( )− −1k i  negations. 

In considered logic we fix 1  as designated value, so a formula ϕ  with variables …1 2, , , np p p  is called 
k-tautology if for every ( )δ δ δ δ= … ∈�

1 2, , , n
n kE , assigning ( )δ ≤ ≤ 1j j n  to each jp  gives the value 1  

for ϕ . 
Our investigations will be focused on k-valued ( ≥ 3k ) logics, but sometimes for simplification of 

consideration we demonstrate the main results only for the 3-valued logics. 

2.2   Determinative Disjunctive Normal Form 

Here we recall the notions of determinative conjunct and determinative disjunctive normal form, 
introduced by A. Chubaryan for 2-valued Boolean functions in [2] and generalized in [3] for 3-valued 
logic. 

Here we will use the current concepts of the unit Boolean cube ( nE ) for { }= 0,1E , a propositional 
formula and a classical tautology. The particular choice of a language for presented propositional 
formulas is immaterial in this consideration. However, because of some technical reasons we assume that 
the language contains the propositional 2-valued variables ( )≥ 1ip i  and(or) ( )≥ ≥1; 1

ji
p i j , logical 

connectives ∧ ∨ ⊃ ¬, , ,  and parentheses. Following the usual terminology we call the variables and 
negated variables literals for 2-valued logic. The conjunct K (term) can be represented simply as a set of 
literals (no conjunct contains a variable and its negation simultaneously), and disjunctive normal form 
(DNF) can be represented as a set of conjuncts. 

In [2] the following notions were introduced. 
We call a replacement-rule each of the following trivial identities for a propositional formula ψ : 

 

ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

ψ ψ
ψ ψ ψ ψ ψ ψ ψ ψ

∧ = ∧ = ∧ = ∧ =
∨ = ∨ = ∨ = ∨ =
⊃ = ⊃ = ⊃ = ⊃ =

= = =
≡ = ≡ = ≡ = ≡ =

0 0,    0 0,    1 ,    1 ,
0 ,   0 ,   1 1,     1 1,
0 1,   0 ,   1 ,   1 1,

0 1,           1 0,           ,
0 ,  0 ,    1 ,   1 .

  

Application of a replacement-rule to some word consists in replacing of its subwords, having the form 
of the left-hand side of one of the above identities, by the corresponding right-hand side.  

Let ϕ  be a propositional formula, { }= …1 2, , , nP p p p  be the set of all variables of ϕ , and 

{ }( )′ = … ≤ ≤
1 2
, , , 1

mi i iP p p p m n  be some subset of P . 

Definition 1: Given { }σ σ σ σ= … ⊂1 2    , , , m
m E , the conjunct { }σσ σσ = …1 2

1 2
, , , m

mi i iK p p p 1  is called 

ϕ − 1 -determinative ( ϕ − 0 -determinative) if assigning ( )σ ≤ ≤ 1j j m  to each   ijp  and successively 

1As usual, given a propositional variable p  and σ ∈ 1E , by σp  we denote the function σ σ
σ

 == 
=

,  if 1
,  if 0

p
p

p
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using replacement-rules we obtain the value of ϕ  (1 or 0) independently of the values of the remaining 
variables. 
ϕ − 1 -determinative and ϕ − 0 -determinative conjuncts are called also ϕ -determinative or 

determinative for ϕ . 
Definition 2: A DNF { }= …1 2, , , jD K K K  is called determinative DNF (dDNF) for ϕ  if ϕ = D  and 

every conjunct ( )≤ ≤ 1iK i j  is 1-determinative for ϕ . 
The notion of determinative disjunctive normal form for 3-valued logic is generalized in [3] as follows. 
Above mentioned replacement-rules are valid for ∧  and ∨ , but for ⊃  are valid only 
ψ ψ ψ⊃ = ⊃ =0 1,1  and ψ ⊃ =1 1 . For negation the replacement rules are ¬ = 10 2 , ¬ =1 12 , 

¬ =1 0  and ψ ψ¬¬¬ = . 
For the other cases we have introduced the following auxiliary relations for replacement 

 ψ ψ ψ ψ∧ = ∧ ≤ ∨ = ∨ ≥1 1 1 1 1 1        , ,2 2 2 2 2 2  

ψ ψ⊃ = ¬0 ,sg    ψ ψ ψ⊃ = ⊃ ≥1 1 1,    ,2 2 2sg  

where by ψ¬sg  is denoted a function, which is equal to 0, if value of ψ  is more than 0, and 1 in the 
opposite case, and by ψsg  is denoted the function, which is equal to 1, if value of ψ  is more than 0, 
and 0, in the opposite case. 

For every propositional variable p  in 3-valued logic p , ¬p  and ¬¬p  are the literals. 
Let ϕ  be a propositional formula of 3-valued logic, { }= …1 2, , , nP p p p  be the set of all variables of φ 

and { }( )′ = … ≤ ≤
1 2
, , , 1

mi i iP p p p m n  be some subset of P . 

Definition 3. Given ( )σ σ σ σ= … ∈� 1 2 3, , , m
m E , the conjunct { }σσ σσ = …1 2

1 2
, , , m

mi i iK p p p  is called ϕ − 1

-determinative (ϕ − 0 -determinative, ϕ − 1
2 -determinative), if assigning ( )σ ≤ ≤ 1j j m  to each 

ji
p

and successively using replacement-rules and, if it is necessary, the auxiliary relations for replacement 
also, we obtain the value of ( )ϕ 1 1,0, 2  independently of the values of the remaining variables. 

For example the conjuncts 1p , ¬ 1p  and ¬¬ 1p , are 1-determinative for the formula 

( )( )⊃ ⊃ ⊃1 2 3 1p p p p . For the first two we use only replacement-rules, but for the last one we must use 
the auxiliary relations for replacement also. 

Definition of dDNF for 3-valued logic is given by analogy. 
Remark 1. It is easily proved that  

1) If for some tautology ϕ , the minimal number of literals, containing in ϕ -determinative conjunct, 
is m , then ϕ -determinative DNF has at least 3m  conjuncts;  

2) If for some tautology ϕ  there is such m  that every conjunct with m  literals is ϕ -determinative, 
then there is ϕ -determinative DNF with no more than 3m  conjuncts. 

By analogy we can define the determinative conjuncts and dDNF for k-valued logic with the 
mentioned properties. For k-valued logic we must introduce the corresponding replacement-rules and 
auxiliary relations for replacement. 

3   Definitions of Main Systems 

Here we recall the main proof systems following [3, 4]. 
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3.1   Elimination Systems kECN  

The axioms of kECN  aren’t fixed, but for every formula ϕ  each conjunct from some dDNF of ϕ  can 
be considered as an axiom. 

For 3-valued logic the elimination rule ( ε -rule) infers conjunct ′ ′′∪ ′′∪ ′K K K  from conjuncts 
{ }′ ∪K p , { }′′ ∪ ¬K p  and { }′′′ ∪ ¬¬K p , where ′K , ′′K  and ′′′K  are conjuncts and p  is a variable. 

It is obvious, that this rule can be easily generalized for k-valued logic with cyclical negation. 
The proof in kECN  is a finite sequence of conjuncts such that every conjunct in the sequence is one 

of the axioms of kECN  or is inferred from earlier conjuncts in the sequence by ε -rule. 
A DNF { }= …1 2, , , lD K K K  is tautological if by using ε -rule can be proven the empty conjunct 

( )∅  from the axioms { }…1 2, , , lK K K . 

3.2   The System 3CN -Cut-Free 

The schematic axioms of the system 3CN -cut-free are the following 
  

1. ( )( )α α α α α−∧ ∧…∧ ∧ … ⊃ ≥ ≤ ≤1 1 1 , 1,1m m i m i m  

2. a. ( ) ( ) ( ) ( )ϕ α β σ σσ σα β α β ⊃  ⊃ ⊃ ⊃ ⊃ ⊃ ⊃    
1 21 2

, , ,
K K K  

b. ( ) ( ) ( ) ( )ϕ α β σ σσ σα β α β ∨  ⊃ ⊃ ⊃ ⊃ ⊃ ∨    
1 21 2

, , ,
K K K  

c. ( ) ( ) ( ) ( )ϕ α β σ σσ σα β α β ∧  ⊃ ⊃ ⊃ ⊃ ⊃ ∧    
1 21 2

, , ,
K K K  

d. ( ) ( ) ( ) ( )ϕ α β σ σσ σ βα β α ⊃ ⊃ ⊃ ⊃ ⊃ 
 

1 2
1 2

, , ,
  ( expK K K  

e. ( ) ( )σσα α⊃ ⊃ ⊃ ¬ )K K  

3. ( ) ( ) ( )δ ϕ δ ϕ δ ϕ ϕ   ∧ ⊃ ⊃ ∧ ⊃ ⊃ ∧ ⊃ ⊃ ⊃      
          ,K K K K

( )γ ϕ γ ϕ γ ϕ ϕ   ⊃ ⊃ ⊃ ⊃ ⊃ ⊃      
)  

where 
1. ϕ  is provable formula, 
2. ( )α ≤ ≤ 1i i m  and γ  are literals, α β δ, ,  are arbitrary formulas, 

3. ( )( ) ( )β β β β−= ∧ ∧…∧ ∧ … ≥1 2 1            , 1l lK l  for arbitrary literals ( )β ≤ ≤ 1i i l , 

4. for every ( )( )β β β β ψ−∧ ∧…∧ ∧ … ⊃1 2 1           l l  style subformula from some aciom of second 

group conjuct { }β β…1, , l  is ψ -determinable, 

5. if { }β β= …1, ,set
nK  for some subformula β β β= ∧ ∧…∧1 2        kK  from first axiom of third 

group, then δ ∉ setK  and δ ∪ setK  is subset of some ϕ -determinative conjunct, but setK  
is not ϕ -determinative. 

6. ( ) ( ) ( )ϕ σ σ σ σ⊃

        = ⊃ ∧ ¬ ∨ ∨ ⊃ ∨ ¬ ∨ ∧ ¬ ∨                1 2 1 2, , , BA B A A B A A B B , 

7. ( ) ( ) ( ) ( )ϕ σ σ σ σ∨

      = ∨ ∨ ⊃ ∧ ¬ ∨ ∨ ¬ ∨ ∧ ⊃            1 2 1 2, , ,A B A A B B A A B B , 
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8. ( ) ( ) ( ) ( )ϕ σ σ σ σ∧

    = ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧        1 2 1 2, , , ?           (A B A A B B A A B B , 

9. ( ) ( ) ( ) ( )( )( )σ σ σ σ σ σϕ σ σ σ σ= ∨ ¬ ∧ ¬ ¬ ∧ ∨ ¬¬ ∧2 2 1 2 1 2
1 2 1 1, , ,exp A B A B A B  

Rule of inference is modus ponens 

 ⊃    A A B
B

  

Note that, in spite of rule modus ponens, the restrictions 1.-5. “insist on construction” of derived 
formula ϕ  step by step on the basis of determinative conjuncts. 

Note also that the corresponding systems kCN -cut-free for ≥ 4k  can be constructed by analogy. 
Some difficultness for generalization of above systems is the definition of the functions ( )ϕ σ σ* 1 2, , ,A B  

for { }∈ ∧ ∨ ⊃* , , ,exp , as described in the corresponding axioms schemas 2.a) – 2.d) of the system 3CN -
cut-free. 

4   Proof Complexity Measures 

In the theory of proof complexity two main characteristics of the proof are: − complexityt , defined as 
the number of proof steps (length) and − complexityl , defined as total number of proof symbols (size). 
We consider two measures (space and width) also: − complexitys  (space), informal defined as 
maximum of minimal number of symbols on blackboard, needed to verify all steps in the proof and 
− complexityw  (width), defined as the maximum of widths of proof formulas. 
Following [5] we give the formal definitions of mentioned proof complexity measures. 
If a proof in the system Φ  is a sequence of lines, where each line is an axiom, or is derived from 

previous lines by one of a finite set of allowed inference rules, then a Φ -configuration is a set of such 
lines. A sequence of Φ -configurations { }…0 1, , , rD D D  is said to be Φ -derivation if 0D  is an empty set 

and for all ( )≤ ≤ 1t t r  the set tD  is obtained from −1tD  by one of the following derivation steps: 

Axiom Download: { }−= ∪1t t AD D L , where AL  is an axiom of Φ . 
Inference: { }− ∪= 1t tD D L , for some L  inferred by one of the inference rules for Φ  from a set of 

assumptions, belonging to −1tD . 
Erasure: −⊂ 1t tD D .  
A Φ -proof of a tautology ϕ  is a Φ -derivation { }…0 1, , , rD D D  such that ϕ ∈� rD , where ϕ�  is 

empty conjunct in kECN  and ϕ�  is ϕ  in kCN -cut-free. 
By ϕ  we denote the size of a formula ϕ , defined as the number of all logical signs entries. It is 

obvious that the full size of a formula, which is understood to be the number of all symbols is bounded 
by some linear function in ϕ . 

The ( )size l  of a Φ -derivation is a sum of the sizes of all lines in a derivation, where lines that are 
derived multiple times are counted with repetitions. The ( )steps t  of a Φ -derivation is the number of 
axioms downloads and inference steps in it. The ( )space s  of a Φ -derivation is the maximal space of a 
configuration in a derivation, where the space of a configuration is the total number of logical signs in a 
configuration, counted with repetitions. The ( )width w  of a Φ -derivation is the size of the widest line 
in a derivation.  

Let Φ  be a proof system and ϕ  be a tautology. We denote by ( )ϕ ϕ ϕ ϕ
Φ Φ Φ Φ, ,t l s w  the minimal possible 

value of ( )− − − −  ,? ,t complexity l complexity s complexity w complexity  for all proofs of tautology ϕ  in 
Φ . 
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5   Main Results 

Before we’ll prove the main theorem, we must give some auxiliary results. 
In some papers in the area of propositional proof complexity for 2-valued classical logic the following 

tautologies (Topsy-Turvy Matrix) play a key role 

 
( )

( )σ

σ σ σ = =… ∈
= ∨ ∧ ∨ ≥ ≤ ≤ −

1 2
, 1 1, , ,

   1,1 2 1 .j

n j
n

m n
n

n m ij iE
TTM p n m  

For all fixed ≥ 1n  and m  in above indicated intervals every formula of this kind expresses the 
following true statement: given a 0,1-matrix of order ×n m  we can “topsy-turvy” some strings (writing 
0 instead of 1 and 1 instead of 0) so that each column will contain at least one 1. 

We generalize this family of 2-tautologies for k-valued (k ≥ 3) logic. 

For given ( )σ σ σ σ= … ∈� 1 2, , , m
m kE  and ( )δ = ≤ ≤ −

−
 0 1

k 1
i i k  we call δ -topsy-turvy-result the 

cortege �σδ , which contains every ( )σ ≤ ≤ 1j j m  with ( )− −1k i  negations. We say that a cortege is 

topsy-turvy-result from the other cortege if there is δ =
−k 1
i  such, that the first cortege is δ -topsy-

turvy-result from the second one. 

For given ( )σ σ σ σ= … ∈� 1 2, , , m
m kE  and ( )δ = ≤ ≤ −

−
 0 1

k 1
i i k  we denote by ( )σ δ�  the number 

of δ  occurrence in σ� . 
Lemma 1. In given 3-valued 10, ,12 -matrix of order ×n m , we can “topsy-turvy” some strings such, 

that each column will contain at least one 1, iff m  is no more than ( )f n , where ( )f n  is defined as 
follows: 
 ( ) ( ) ( ) ( ) = + = + + 1 1, 1 / 2 1.f f n f n f n   

Proof is given by induction on number n  of matrix strings. For = 1n , = 1m . Suppose that 
statement is valid for n  strings. If the number of strings is + 1n , we consider the last string. If for 

some ( )δ = ≤ ≤ −
−

 0 1
k 1

i i k  ( ) ( )σ δ  ≥ + � m 2 / 3  then after δ -topsy-turvy we obtain in the last 

string at least ( ) + m 2 / 3  1, therefore we’ll have at least ( ) + 2 / 3m  columns, which contain at 
least one 1. For the other columns we consider cortege of n -th string and repeat the same action. Let 
x  be the maximum columns, which we can add to matrix by order ( ) ( )+ ×1n f n , such that we can do 
“topsy-turvy” on some strings, such that each column of new matrix will contain at least one 1. For 
above it is follow, that ( ) ( )+ = +1f n f n x , where ( )( ) = + = 1 2 / 3x f n , therefore we have 

( )( )≤ + =  1 2 / 3x f n , then ( )+ ≥ −1 3 2f n x , so ( ) + ≥ −3 2f n x x , from which ( ) ≥ −/ 2 1f n x  and 

finally ( ) = + / 2 1x f n . 
Corollary 1. In given k-valued (k ≥ 4) matrix of order ×n m , we can “topsy-turvy” some strings, 
such that each column will contain at least one 1, iff m  is no more than ( )f n , where ( )f n  is defined 
as follows: 
 ( ) ( ) ( ) ( ) = + = + − + 1 1, 1 / 1 1f f n f n f n k   

Proof can be given by analogy. 
Corollary 2. For every ≥ 1n  and ( )≤m f n  the following formulas are k-tautologies 

 
( )

( )( )σ

σ σ σ
σ σ σ

= =…
= ∨ ∧ ∨ … ∈

1 2
, 1 21 1, , ,

 ,      , , ,j

j
n

m n
n

n m i n kj i
TTM p where first disjunctions are for all E ,  

Proof is obvious. 
Note that ( ) ( ) ( ) ( ) ( ) ( )    + = + + ≥ + = ≥… ≥ > 

/31 / 2 1 / 2 3 / 2 3 / 2 3 nn nf n f n f n f n f n f n . 
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Corollary 3. For every ≥ 1n  and   = /33 nm  the following formulas are 3-tautologies 

( )
( )( )σ

σ σ σ
σ σ σ

= =…
= ∨ ∧ ∨ … ∈

1 2
, 1 2 31 1, , ,

 ,       , ,,j

j
n

m n
n

n m i nj i
TTM p where first disjunctions are for all E  

The analogous formulas for k-valued logics are k-tautologies for every ≥ 1n  and m=   /n kk . 
Lemma 2. The systems 3CN  and 3CN -cut-free are polynomially equivalent by all proof complexity 
measures. 

Proof. Let us recall that polynomial equivalence means, that transformation of any proof in one 
system into a proof in the other system can be done with no more than polynomial increase of proof 
complexity. It is not difficult to see that every proof of empty conjunct from dDNF of any formula ϕ  
in the system 3CN  can be easily transformed into proof of ϕ  in the system 3CN -cut-free with no 

more than linear ( ϕ* ) increase of t , s  and w  complexity and with no more than ( ϕ
2

* ) increase of 
size. Really we can derive formula ϕ  from every ϕ -determinative conjunct, using the axioms of the 
first and second groups, and then, using the axioms of the last group, derive ϕ . Reverse transformation 
is simpler. Really we can take as axioms every ϕ -determinative conjunct from the first occurrences of 
axioms 3(a) in proof. It is obvious, that in such reverse transformation we have no increase. 
Lemma 3. The bounds of minimal possible value of −s complexity  for all proofs of 3-tautology ϕ  
with n  variables in 3CN  are: ( )ϕ = 2s O n  and ( )ϕ = Ωs n . 

Proof. For upper bound we use the perfect DNF D of ϕ , which obviously is dDNF.  
 We consider the following tree like refutation of D in the system 3CN , whereas axioms from the left 

to the right are the following conjuncts: 
…0 0 0

1 2, , , np p p       …
10 0 2

1 2, , , np p p      …0 0 1
1 2, , , np p p   …..    …1 1 1

1 2, , , np p p  
Number of conjuncts used as axioms will be 3k . In the first stage we can take the first 3 axioms and 

make elimination rule on them, then the next 3 and so on. As a result we will have −13k  conjuncts 
without np  variable. Then on next stage we will eliminate −1np  in same way. Consequentially 
eliminating all variables we will have tree like proof with height + 1n , where each node of tree will be 
one conjunct which is result of elimination rule of 3 conjuncts from previous level. Let number of levels 
of tree like proof be from 0  to n  (all conjuncts on the level of number 0  have size n , the empty 
conjunct is on the last level with number n ). Let ( )≤ ≤ 1lc l n  be one of conjuncts on level l  of tree 
like proof, it is result of elimination rule on 3 conjuncts ′ ′′ ′′′,  and c c c  from level − 1l . By proving 
′ ′′ ′′′,   and c c c  separately we will have the following ( )ls c  space usage for proving lc  in above 

described tree like proof:  
( ) ( ) ( ) ( )′ ′′ ′′′ ′ ′′ ′′= + + = + ′ ′ ′′ ′+ ′+ = + ′

ls c s c c c c c s c c s c c . 
All conjuncts on the same level l  of tree like proof have same size −n l . So above equation will look 

like this: 
( ) ( ) ( )( )= +′ − −2 1ls c s c n l . 

As all conjuncts on same level have same space usage, we denote by ( )S l  the space used for each 
conjunct on level l :  

( ) ( ) ( )= − + − +1 2 1S l S l n l . 
Total space usage will be space usage on level n : 

( ) ( ) ( ) ( ) ( ) ( )≤ = − + = − + + =… = + +…+ = 2
φ 1 2 2 2 2 1 2 1 2s S n S n S n n O n . 

Using the fact that at least 3 determinative conjunct must be in every proof, we have ( )ϕ = Ωs n . 
The analogous result for more-value logics can be proved also. 
Main Theorem 
There exists a sequence of 3-tautologies ϕn , for the proof complexity measures of which both in the 

systems 3CN  and 3CN -cut-free are valid the following equations:  
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1) ( ) ( )ϕ θ=3 nlog n ; 

2) ( )( ) ( )ϕ θ=3 3 nlog log t n ; 

3) ( )( ) ( )ϕ θ=3 3 nlog log l n ; 

4) ( )( ) ( )ϕ θ=3 nlog s n ; 

5) ( )( ) ( )ϕ θ=3 .nlog w n  

Proof. As ϕ  we take the formulas ,n mTTM  for every ≥ 1n  and   = /33 nm . For upper bounds we 

use the perfect DNF of ϕ , and for lower bounds – the properties of ϕn –determinative conjuncts. 

It is not difficult to see, that number of variables of ϕn  is   /33 3 nnn , the minimal number of variables 

in every ϕn –determinative conjuncts is   /33 n , therefore by Remark 1 in the end of point 2.2 the 

minimal number of ϕn –determinative conjuncts is 
  /333
n

, hence the number of axioms, using in the 

system 3CN , must be at least 
  /333
n

. 
So, using these statements and Lemma 3, we can obtain all the upper and lower bounds for the 

system 3CN , and using Lemma 2, for the system 3CN -cut-free. 

Corollary 4. If we take the analogous formulas for k-valued logics for every ≥ 1n  and   = /n km k , 
then the analogous results can be obtained for more valued logics:  

There exists a sequence of k-tautologies (k ≥ 4) ϕn  in both kCN  and kCN -cut-free systems, where 
the following equations are valid for the proof complexity measures:  

1) ( ) ( )ϕ θ=k nlog n ; 

2) ( )( ) ( )ϕ θ=k k nlog log t n ; 

3) ( )( ) ( )ϕ θ=k k nlog log l n ; 

4) ( )( ) ( )ϕ θ=k nlog s n ; 

5) ( )( ) ( )ϕ θ= .k nlog w n  
Proof is given as above. 

6   Conclusion 

As many-valued logics have many interesting applications, then the proof complexities research in them 
is very important. In this paper some results of An. Chubaryan [2] are generalized for some version of k-
valued logics ( ≥ 3k ). Some class of k-valued ( ≥ 3k ) tautologies are described and the main proof 
complexity characteristics in two types of proof systems for suggested version of many valued 
propositional logic are investigated. We hope that analogous results can be proved for other versions of 
k-valued logics ( ≥ 3k ) also. 
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