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Abstract The main aim of this paper is to develop some basic theories of stochastic functional
differential equations (SFDEs) with non-Lipschitz coefficients. Firstly, we show that Peano’s theo-
rem holds for SFDEs, that is, the continuity alone is sufficient to prove the local existence of the
initial value problem of SFDEs. Secondly, some new uniqueness theorems are established by the
comparison methods proposed by Xu et al. And then, continuation theorems and global existence
theorems for SFDEs with non-Lipschitz coefficients are obtained. Finally, an example is given to
illustrate the efficiency of the obtained results.
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1 Introduction

Many physical phenomena can be modelled by stochastic dynamical systems whose evolution on time is
governed by random forces as well as intrinsic dependence of the state on a finite part of its past history.
Such models may be identified as SFDEs. In recent years, the investigation for SFDEs has attracted
the considerable attention of researchers and many qualitative properties of solutions to SFDEs have
been obtained. Some important results can be found in [1,2,3] and references cited therein. It is well
known that most of the existence and uniqueness theorems for SFDEs were established under Lipschitz
conditions. The important representative works are as follows.

Mao [3] considered the following SFDE of Itô-type

dx(t) = f(t, xt)dt+ g(t, xt)dω(t), t0 ≤ t < T, (1)

with the initial condition xt0 = ξ, where xt(s) = x(t+ s), s ∈ [−τ, 0], τ > 0, T is a constant, or T = ∞.
Mao obtained the existence-uniqueness of solutions of the initial value problem (1) if f and g satisfy

linear growth condition and uniform Lipschitz condition or quasi-local Lipschitz condition [3, Theorem
2.2 and Theorem 2.5]. Xu et al. [4, Lemma 3.1] obtained the existence-uniqueness of solutions for SFDE
(1) if f and g only satisfy uniform Lipschitz condition. In [5], Xu et al. presented the existence-uniqueness
theorems of solutions for SFDE (1) if f and g are continuous and satisfy local Lipschitz condition. By
means of the successive approximations method, Turo [6] investigated the local or global existence and
uniqueness of solutions to SFDE (1) under non-Lipschitz condition. Ren et al. [7] obtained the existence-
uniqueness of solutions for SFDEs with infinite delay under non-Lipschitz condition and a weakened
linear growth condition. Base on the Razumikhin technique and compare principle, Xu et al.[8] obtained
the moment estimate and existence of solutions for SFDEs with discontinuous initial functions.

It is well known that Peano’s theorem is a classical and fundamental existence theorem for the initial
value problem of ordinary differantial equations (ODEs)[9]. Peano’s theorem shows that continuity alone
is sufficient to prove a local existence theorem for ODEs. Up to now, Peano’s theorem has been extended
to many cases such as ellipitic differential equations [10], functional differential equations [11], differential
inclusions [12], fuzzy differential equations [13,14,15], fractional differential equations [16]. However, the
Peano’s theorem for SFDE (1) has not yet been established prior to this work and it is still open.

Motivated by the discussions above, a natural question then is that of asking whether Peano’s theorem
holds for SFDE (1)? That is, is the continuity alone sufficient to prove a local existence theorem for SFDE
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(1)? One of our main objectives is to give a positive answer of the above question. Our new theorems
need only the continuity condition but neither the Lipschitz condition nor the non-Lipschitz condition
used in [6,7], therefore the theorems cover a wider class of nonlinear SFDEs. But, our existence theorems
can not guarantee the uniqueness of the solutions. Therefore, our second objective is to establish some
general uniqueness theorems. Finally, we will give some continuation and global existence theorems for
SFDE (1) [5] under non-Lipschitz condition with Lipschitz condition being considered as a special case.

This paper is organized as follows. In section 2, we introduce some notations and definitions. Section
3 is devoted to obtain the Peano’s theorem for SFDE (1). In section 4, we will establish some new
uniqueness theorems for SFDE (1). In section 5, we shall give some continuation theorems and global
existence theorems for SFDE (1). An example is given in section 6 to illustrate the efficiency of the
obtained results.

2 Preliminaries

In this section, we introduce some notations and recall some basic definitions.
C(X,Y ) denotes the space of continuous mappings from the topological space X to the topological

space Y . Especially, let C ∆= C([−τ, 0], Rn) with the norm ∥φ∥ = sup
−τ≤s≤0

|φ(s)|, where τ > 0 and | · | is

any norm in Rn.
Let (Ω,F , {Ft}t≥t0 , P ) be a complete probability space with a filtration {Ft}t≥t0 satisfying the usual

conditions ( i.e. it is right continuous and Ft0 contains all P -null sets in F). ω(t) = (ω1(t), . . . , ωm(t))T

is an m-dimensional Brownian motion defined on (Ω,F , {Ft}t≥t0 , P ).
For Banach space Lp(Ω,Rn), p > 0, we define the norm

|x|Ω
∆= (E|x|p)

1
p , p > 0.

We also employ | · |Ω to denote the norm of Banach space Lp(Ω,Rn×m), p > 0.
We shall adopt the usual manner (see [3,5]) and let Lp(Ω,C(J,Rn)), p > 0, be the space of (F , Borel

C)-measurable maps Ω → C(J,Rn) which are Lp in the Bochner sense. Give Lp(Ω,C(J,Rn)) the norm

∥ξ∥ΩJ = [
∫

Ω

sup
t∈J

|ξ(t, ω)|pdP (ω)]
1
p = [E sup

t∈J
|ξ(t, ω)|p]

1
p , p > 0,

where J ⊂ R is a bounded interval. Especially, when J = [−τ, 0],

Lp(Ω,C(J,Rn)) = Lp(Ω,C).

For convenience, we denote the norm of ξ ∈ Lp(Ω,C) by

∥ξ∥Ω
∆= ∥ξ∥Ω[−τ,0] = [E∥ξ∥p]

1
p , p > 0.

Let Lp
D(Ω,C([t0 − τ, a], Rn)) be the space of all processes x(t) ∈ Lp(Ω,C([t0 − τ, a], Rn)) such

that x(t) is Ft0-measurable for all t ∈ [t0 − τ, t0] and x(t) is Ft-measurable for all t ∈ [t0, a]. Then,
Lp

D(Ω,C([t0 − τ, a], Rn)) is a closed linear subspace of Lp(Ω,C([t0 − τ, a], Rn)) [2, P. 31].
Throughout this paper, we always set p ≥ 2 and suppose that ξ ∈ Lp(Ω,C) is an Ft0 -measurable

process and for (1), the drift coefficient function f : [t0, T ) × Lp(Ω,C) → Lp(Ω,Rn) and the diffusion
coefficient g : [t0, T ) × Lp(Ω,C) → Lp(Ω,Rn×m) are both Borel measurable.

Definition 2.1. Let J̄ = [t0 − τ, a) or J̄ = [t0 − τ, a], where t0 < a ≤ T . Rn-value stochastic process
x(t) defined on J̄ is called a solution of (1) if x(t) ∈ Lp

D(Ω,C(J̄ , Rn)) and satisfies (1) almost surely.
The solution x(t) of (1) on interval J̄ is said to be unique if any other solution x̄(t) on interval J̄ is
indistinguishable from it, that is

P{x(t) = x̄(t) for all t ∈ J̄} = 1.
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Definition 2.2. Let x(t) on J1 and x̄(t) on J2 both be solutions of (1). If J1 ⊂ J2, J1 ̸= J2 and
P{x(t) = x̄(t) for all t ∈ J1} = 1, we say x̄(t) is a continuation of x(t), or x(t) can be continued to
J2. A solution x(t) is non-continuable if it has no continuation. The existing interval of non-continuable
solution x(t) is called the maximum existing interval of x(t).

Definition 2.3. The functional F : [t0, T ) × Lp(Ω,C) → Lp(Ω,Rn) is said to be quasi-bounded if for
any constants β ∈ (t0, T ) and α > 0, there exists a positive constant M such that

|F (t, ϕ)|Ω ≤ M,

provided that
t ∈ [t0, β] and ∥ϕ∥Ω ≤ α.

Definition 2.4. It is said that a sample path x(t, ω) explodes in [t0 −τ, T ) if for any integer k > 0, there
exists a time s ∈ [t0 − τ, T ) such that |x(s, ω)| ≥ k. And the solution x(t, ω) of (1) explodes in [t0 − τ, T )
if there exists a measurable subset S ⊂ Ω with P (S) > 0 such that the sample path x(t, ω) explodes in
[t0 − τ, T ) for almost all ω ∈ S.

Definition 2.5. A function h ∈ C(R × Rm × Rm, Rm) is called an Hm-function if for any t ≥ t0 ∈ R
and any u(1), u(2), v(1), v(2) ∈ Rm, every ith element of h satisfies hi(t, u(1), v(1)) ≤ hi(t, u(2), v(2)) when
u(1) ≤ u(2) with u(1)

i = u
(2)
i and v(1) ≤ v(2).

3 Local Existence Theorem

In this section, we give a local existence theorem for SFDE (1) assuming that f and g are only continuous.

Lemma 3.1. Set p ≥ 2. For any t0 ∈ R and β > 0, let g be a process in Lp([t0, t0 + β];Rn×m) such that
E

∫ t0+β

t0
|g(s)|pds < ∞, then

E|
∫ t0+β

t0

g(s)dω(s)|p ≤ Cpβ
p−2

2 E
∫ t0+β

t0

|g(s)|pds, where Cp = (p(p− 1)
2

)
p
2 .

Proof. The proof is similar to that of Theoerm 7.1 in [3] except letting

x(t) =
∫ t

t0

g(s)dω(s), ∀ t ∈ [t0, t0 + β],

and noting x(t0) = 0. So it is omitted.

Definition 3.1. Let Y be a subset of a Banach space X and f : Y → X. If f is continuous and f(Y ) is
contained in a compact subset of X, then f is a compact mapping.

Lemma 3.2. (Schauder fixed-point theorem, see in [17, p.184]) Let Y be a nonempty convex subset of a
Banach space X and Γ : Y → Y be a compact mapping. Then Γ has a fixed point.

Theorem 3.1. (Local existence theorem) Assume f and g are continuous on [t0, T ) × Lp(Ω,C). Then
there is a β > 0 such that the SFDE (1) has a solution on [t0 − τ, t0 + β].

Proof. Since f and g are continuous, for the above given ξ and any xt ∈ Lp(Ω,C), there exists a positive
constant δ ≤ 1 such that if |t− t0| ≤ δ and ∥xt − ξ∥Ω ≤ δ, then

|f(t, xt) − f(t0, ξ)|Ω ≤ 1, |g(t, xt) − g(t0, ξ)|Ω ≤ 1. (2)

Therefore, for |t− t0| ≤ δ and ∥xt − ξ∥Ω ≤ δ,

|f(t, xt)|Ω ∨ |g(t, xt)|Ω ≤ [|f(t0, ξ)|Ω ∨ |g(t0, ξ)|Ω ] + 1 ∆= M. (3)
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Since ξ ∈ Lp(Ω,C), then for the above δ, there is a δ0 > 0 such that

|ξ(s+ r) − ξ(s)|Ω ≤ δ

2
, ∀ |r| ≤ δ0.

For α > |ξ(0)|Ω , we choose β = min{1, δ0, [ δ

2M(1+C
1
p

p )
]2, [ α−|ξ(0)|Ω

M(1+C
1
p

p )
]2} and denote

S(α, β) =
{
x ∈ Lp(Ω,C([t0 − τ, t0 + β], Rn)) : |x(t)|Ω ≤ α on [t0 − τ, t0 + β];

|x(t1) − x(t2)|Ω ≤ M(1 + C
1
p
p )|t1 − t2| 1

2 on [t0, t0 + β];x(t) = ξ(t− t0)

for t0 − τ ≤ t ≤ t0

}
, (4)

where Cp is defined in Lemma 3.1. The set S(α, β) is convex and contained in a Banach space. Let

Γ (x)(t) =
{
ξ(0) +

∫ t

t0
f(s, xs)ds+

∫ t

t0
g(s, xs)dω(s), t ≥ t0,

ξ(t− t0), t ∈ [t0 − τ, t0].
(5)

Then Γ is clearly continuous.
Now, we will show

Γ : S(α, β) → S(α, β), ∀ t ∈ [t0, t0 + β]. (6)

Let s ∈ [−τ, 0] and v ∈ [t0, t0 + β]. If s+ v ≤ t0, by the definition in (5), we have

|x(s+ v) − ξ(s)|Ω = |ξ(s+ v − t0) − ξ(s)|Ω ≤ δ

2
since 0 ≤ v − t0 ≤ β ≤ δ0.

If s+ v ≥ t0, then,

|x(s+ v) − ξ(s)|Ω ≤ |x(s+ v) − ξ(0)|Ω + |ξ(0) − ξ(s)|Ω

≤ |x(s+ v) − ξ(0)|Ω + δ

2

≤ |x(s+ v) − x(t0)|Ω + δ

2

≤ M(1 + C
1
p
p )β 1

2 + δ

2
≤ δ (7)

because 0 ≤ −s ≤ v − t0 ≤ β ≤ δ0.
The above expression means that for any v ∈ [t0, t0 + β], s ∈ [−τ, 0],

|x(v + s) − ξ(s)|Ω = [E|x(v + s) − ξ(s)|p]
1
p ≤ δ. (8)

Thus, we conclude that for any v ∈ [t0, t0 + β],

∥xv − ξ∥Ω = [E sup
−τ≤s≤0

|x(v + s) − ξ(s)|p]
1
p ≤ δ. (9)

Therefore, the inequality (3) holds.
On the other hand, for any t ∈ [t0, t0 + β],

|Γ (x)(t)|Ω ≤ |ξ(0)|Ω + |
∫ t

t0

f(s, xs)ds|Ω + |
∫ t

t0

g(s, xs)dω(s)|Ω . (10)

By Hölder’s inequality and (3), we have

|
∫ t

t0

f(s, xs)ds|pΩ = E|
∫ t

t0

f(s, xs)ds|p
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≤ βp−1
∫ t

t0

E|f(s, xs)|pds

≤ βp−1
∫ t

t0

|f(s, xs)|pΩds

≤ Mpβp. (11)

From Lemma 3.1, we get

|
∫ t

t0

g(s, xs)dω(s)|pΩ = E|
∫ t

t0

g(s, xs)dω(s)|p

≤ Cp(t− t0)
p−2

2 E
∫ t

t0

|g(s, xs)|pds

≤ Cpβ
p−2

2

∫ t

t0

E|g(s, xs)|pds

= Cpβ
p−2

2

∫ t

t0

|g(s, xs)|pΩds

≤ Cpβ
p
2Mp. (12)

Then, by the definition of β, we obtain

|Γ (x)(t)|Ω ≤ |ξ(0)|Ω +Mβ + C
1
p
p β

1
2M ≤ |ξ(0)|Ω +M(1 + C

1
p
p )β 1

2 ≤ α. (13)

To show that ΓS(α, β) ⊆ S(α, β), for t′, t′′ ∈ [t0, t0 + β], we shall estimate

|Γ (x)(t′) − Γ (x)(t′′)|Ω = |
∫ t′

t′′
f(s, xs)ds+

∫ t′

t′′
g(s, xs)dω(s)|Ω

≤ |
∫ t′

t′′
f(s, xs)ds|Ω + |

∫ t′

t′′
g(s, xs)dω(s)|Ω .

By the same way in (12) and (13), we have

|
∫ t′

t′′
f(s, xs)ds|pΩ = E|

∫ t′

t′′
f(s, xs)ds|p

≤ |t′ − t′′|p−1
∫ t′

t′′
E|f(s, xs)|pds

≤ |t′ − t′′|p−1
∫ t′

t′′
|f(s, xs)|pΩds

≤ Mp|t′ − t′′|p, (14)

and

|
∫ t′

t′′
g(s, xs)dω(s)|pΩ = E|

∫ t′

t′′
g(s, xs)dω(s)|p

≤ Cp|t′ − t′′|
p−2

2 E
∫ t′

t′′
|g(s, xs)|pds

≤ Cp|t′ − t′′|
p−2

2

∫ t′

t′′
E|g(s, xs)|pds

= Cp|t′ − t′′|
p−2

2

∫ t′

t′′
|g(s, xs)|pΩds

≤ Cp|t′ − t′′|
p
2Mp. (15)
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Then, we get

|Γ (x)(t′) − Γ (x)(t′′)|Ω ≤ M |t′ − t′′| +MC
1
p
p |t′ − t′′| 1

2

≤ M(1 + C
1
p
p )|t′ − t′′| 1

2 . (16)

From (13) and (16), we obtain ΓS(α, β) ⊆ S(α, β). Moreover, from the definition of S(α, β) and Arzelà-
Ascoli theorem [18, p.772], S(α, β) is compact. Then, by Lemma 3.2, there is a fixed point x(t) which,
as it is easy to see, is a solution of (1) with initial data xt0 = ξ. The proof is completed.

Remark 3.1. Theorem 3.1 is a natural generalization of the local existence theorem [11,17] of the
functional differential equation

ẋ(t) = f(t, xt), xt0 = ξ ∈ C, (17)

where x ∈ Rn and f ∈ C([t0,+∞) × C,Rn).

4 Local Uniqueness Theorems

In this section, we will establish some uniqueness theorems of solutions of SFDE (1) by using comparison
theorems established in [5].

For the vector functions x(t) = (x1(t), . . . , xm(t))T ∈ C(R,Rm), we denote

x̄(t) = (x̄1(t), . . . , x̄m(t))T , x̄i(t) = sup
−τ≤s≤0

xi(t+ s), i = 1, 2, . . . ,m,

and define the Dini upper right derivative as follows:

D+x(t) = (D+x1(t), . . . , D+xm(t))T , D+xi(t) = lim sup
h→0+

xi(t+ h) − xi(t)
h

.

Lemma 4.1 (see Lemma 2 in [5]). Let h ∈ C(R×Rm ×Rm, Rm) be an Hm-function. Assume that x(t)
and y(t) are continuous and satisfy

x(t) ≤ y(t), t ∈ [t0 − τ, t0].

Furthermore, x(t) is a solution of

D+x(t) ≤ h(t, x(t), x̄(t)), t ≥ t0, (18)

and y(t) is a solution of

ẏ(t) = h(t, y(t), ȳ(t)), t ≥ t0.

Then for all t ≥ t0,

x(t) ≤ y(t). (19)

Especially, when τ = 0, we can get the following corollary.

Corollary 4.1 (Lemma 8.2 in [19, P.72]). Let h ∈ C(R×R,R). Assume that x(t) and y(t) are continuous.
Furthermore, x(t) is a solution of

D+x(t) ≤ h(t, x(t)), t ≥ t0,

and y(t) is the maximal solution of

ẏ(t) = h(t, y(t)), t ≥ t0.

Then for all t ≥ t0,

x(t) ≤ y(t),

provided that x(t0) ≤ y(t0).
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By using the Lemma 4 in [5] and Corollary 4.1, we can easily get the following lemma.

Lemma 4.2. Let a > 0 and U(t, y(t)) be continuous and nonnegative for t0 ≤ t < t0 + a, y ≥ 0. Assume
that u(t) ∈ C([t0 − τ, t0 + a), R) satisfies

D+u(t) ≤ U(t, ū(t)), t ∈ [t0, t0 + a). (20)

If y(t), t ∈ [t0, t0 + a) is the maximal solution of

ẏ(t) = U(t, y(t)),

then for all t0 ≤ t < t0 + a,

u(t) ≤ y(t),

provided that ū(t0) ≤ y(t0).

Theorem 4.1. Let R+ = [0,+∞). Assume that there is a region G ⊂ [t0,+∞) × Lp(Ω,C) such that f
and g are continuous in G and for any (t, ϕ), (t, ψ) ∈ G,

|f(t, ϕ) − f(t, ψ)|pΩ ∨ |g(t, ϕ) − g(t, ψ)|pΩ ≤ F (t, ∥ϕ− ψ∥p
Ω), (21)

where F (t, u) ∈ C([t0,+∞) × R+, R+) is monotone nondecreasing with respect u. If for every t0 ≤ t <
+∞, u ≡ 0 is the only solution of the following differential equation with zero initial data

u̇(t) = F (t, u(t)), (22)

then Eq. (1) has a unique local solution through any points in G.

Proof. If the conclusion of Theorem 4.1 is not true. Then there must be a point (t∗, ξ∗) ∈ G such that
there are two solutions x(t) and y(t) of Eq. (1) through (t∗, ξ∗) with

x(t) ̸≡ y(t), t ∈ [t∗, t∗ + a], for some a > 0, almost surely. (23)

Denoting z(t) = x(t) − y(t), we have

z(t) =
∫ t

t∗
(f(s, xs) − f(s, ys))ds+

∫ t

t∗
(g(s, xs) − g(s, ys))dω(s). (24)

Then, by Hölder’s inequality and Burkholder-Davis-Gundy’s inequality, we find

∥z∥p
Ω[t∗,t] ≤ 2p−1E sup

t∗≤r≤t
|
∫ r

t∗
(f(s, xs) − f(s, ys))ds|p

+ 2p−1E sup
t∗≤r≤t

|
∫ r

t∗
(g(s, xs) − g(s, ys))dω(s)|p

≤ (2a)p−1E
∫ t

t∗
|f(s, xs) − f(s, ys)|pds

+ 2p−1a
p−2

2 cpE
∫ t

t∗
|g(s, xs) − g(s, ys)|pds

≤ K

∫ t

t∗
F (s, ∥zs∥p

Ω)ds

= K

∫ t

t∗
F (s,E sup

t∗≤ϱ≤s
|z(ϱ)|p)ds

= K

∫ t

t∗
F (s, ∥z(ϱ)∥p

Ω[t∗,s])ds, (25)
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where cp = (pp+1/2(p− 1)p−1)
p
2 for p ≥ 2, and K = (2a)p−1 + 2p−1a

p−2
2 cp.

Define v(t) = ∥z(s)∥p
Ω[t∗,t] and

w(t) = K

∫ t

t∗
F (s, ∥z(ϱ)∥p

Ω[t∗,s])ds.

Since F (t, u) is monotone nondecreasing with respect u, (25) yields that v(t) ≤ w(t) and{
w′(t) = KF (t, v(t)) ≤ KF (t, w(t)),
w(t∗) = 0. (26)

For every t∗ ≤ t ≤ t∗ + a, Corollary 4.1 shows that

v(t) ≤ w(t) ≤ r(t), t∗ ≤ t ≤ t∗ + a,

where r(t) is the maximal solution of the equation{
u′(t) = KF (t, u(t)),
u(t∗) = 0. (27)

By assumption, however, we have r(t) ≡ 0, and hence

z(t) ≡ 0, t∗ ≤ t ≤ t∗ + a, almost surely,

which contradicts (23). So Theorem 4.1 is true.

Remark 4.1.

(i) If F (t, u) is concave with respect to u, inequality (21) can be replaced by

|f(t, xt) − f(t, yt)|p ∨ |g(t, xt) − g(t, yt)|p ≤ F (t, ∥ϕ− ψ∥p). (28)

In fact, Taking the expectation on both side of (28) and noticing that

EF (t, ∥ϕ− ψ∥p) ≤ F (t,E∥ϕ− ψ∥p)

when F (t, u) is concave with respect to u, (21) can be implied by (28).
(ii) The function F (t, u) = λ(t)κ(u), t ∈ [t0,+∞), u ∈ R+ is admissible in (28) provided that λ(t) ≥ 0

is continuous and κ(·) : R+ → R+ is continuous, monotone nondecreasing satisfying κ(0) = 0,
κ(u) > 0 for u > 0 and

∫
0+

du
κ(u) = ∞ (see [6,20,21] ). In particular, if λ(t) = λ (positive constant),

then condition (28) implies the Osgood condition (see [7,21,22,23]); if λ(t) = λ and κ(u) = u, then
condition (28) implies the Lipschitz condition (see [2]).

(iii) All of our results can be applied to SFDEs with infinite delays if the space C is replaced by
BC((−∞, 0], Rn) which is the space of all bounded continuous with the norm ∥φ∥∗ = sup

−∞<s≤0
|φ(s)|.

Then the uniqueness result in [7] can be implied by taking F (t, u) = κ(u) in (28).

Now, we will consider sufficient conditions for the uniqueness of solutions to SFDE (1) by using
Lyapunov functions.

Let C1,2(R×Rn, R) denote the family of all nonnegative functions V (t, x) on R×Rn which are twice
continuously differentiable in x and once in t. For each V (t, x) ∈ C1,2(R×Rn, R), we define an operator
LV , associated with the SFDE (1), from R×Rn to R by

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, xt) + 1
2
trace[gT (t, xt)Vxxg(t, xt)],

Vt(t, x) = ∂V (t, x)
∂t

, Vx(t, x) = (∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xn

), Vxx(t, x) = (∂V
2(t, x)

∂xi∂xj
)n×n.
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Theorem 4.2. Denote Rm
+

∆= {x ∈ Rm : x ≥ 0}. Let F : [t0,+∞) ×Rm
+ ×Rm

+ → Rm
+ be an Hm function

with F (t, 0, 0) ≡ 0. For every t0 ≤ t < +∞, u = (u1, · · · , um)T ≡ 0 is the only solution of the following
functional differential equation with zero initial data

u̇(t) = F (t, u(t), ū(t)). (29)

Assume that there exists a V = (V1, · · · , Vm)T ∈ C1,2([t0−τ,+∞)×Rn, Rm
+ ) and a region G ⊂ [t0,+∞)×

Lp(Ω,C) such that, for any (t, z(t)) ∈ G, EV (t, z(t)) = 0 if and only if Ez(t) = 0 and

ELV (t, z(t)) ≤ F (t,EV (t, z(t)),EV (t, z(t))), (30)

where LV = (LV1, . . . ,LVm)T , EV = (EV1, . . . ,EVm)T . Then Eq. (1) has at most one local solution
through any points in G.

Proof. If the conclusion of Theorem 4.2 is not true. Then there must be a point (t∗, ξ∗) ∈ G such that there
are two solutions x(t) and y(t) of Eq. (1) through (t∗, ξ∗) with (23) holding. Denoting z(t) = x(t) − y(t),
we have

z(t) =
∫ t

t∗
(f(s, xs) − f(s, ys))ds+

∫ t

t∗
(g(s, xs) − g(s, ys))dω(s). (31)

By Itô’s formula, we get

V (t, z(t)) = V (t∗, z(t∗)) +
∫ t

t∗
LV (s, z(s))ds

+
∫ t

t∗
Vz(s, z(s)) · [g(s, xs) − g(s, ys)]dω(s), t ∈ [t∗, t∗ + a]. (32)

From (30) and (32), for small enough ∆t > 0, we can find

∆EV (t) ∆= EV ((t+∆t), z(t+∆t)) − EV (t, z(t))

= E
∫ t+∆t

t

LV (s, z(s))ds

≤
∫ t+∆t

t

F (s,EV (s, z(s)),EV (s, z(s)))ds, t ∈ [t0, t0 + a].

Noting ∆t > 0, we have

∆EV (t)
∆t

≤ 1
∆t

∫ t+∆t

t

F (s,EV (s, z(s)),EV (s, z(s)))ds, t ∈ [t∗, t∗ + a].

Letting ∆t → 0+, we get

D+EV (t, z(t)) ≤ F (t,EV (t, z(t)),EV (t, z(t))), (33)

for all t ∈ [t∗, t∗ + a].
Since (29) has a unique solution u ≡ 0, then Lemma 4.1 shows that

EV (t, z(t)) ≤ 0, t∗ ≤ t ≤ t∗ + a,

and the assumptions on V imply that z(t) ≡ 0 for t∗ ≤ t ≤ t∗ + a almost surely. This contradicts (23).
The uniqueness has been proved.

Theorem 4.3. Let F ∈ C([t0,+∞) × R+, R+) with F (t, 0) ≡ 0. For every t0 ≤ t < +∞, u =
(u1, · · · , um)T ≡ 0 is the only solution of the following functional differential equation with zero ini-
tial data

u̇(t) = F (t, u(t)). (34)
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Assume that there exists a V = (V1, · · · , Vm)T ∈ C1,2([t0−τ,+∞)×Rn, R+) and a region G ⊂ [t0,+∞)×
Lp(Ω,C) such that, for any (t, z(t)) ∈ G, EV (t, z(t)) = 0 if and only if Ez(t) = 0 and

ELV (t, z(t)) ≤ F (t,EV (t, z(t))). (35)

Then Eq. (1) has at most one local solution through any point in G.

Proof. If the conclusion of Theorem 4.3 is not true. Then there must be a point (t∗, ξ∗) ∈ G such that
there are two solutions x(t) and y(t) of Eq. (1) through (t∗, ξ∗) with (23) holding. Denote z(t) = x(t)−y(t).
Using the same method in (33), we obtain

D+EV (t, z(t)) ≤ F (t,EV (t, z(t))), t ∈ [t∗, t∗ + a].

By Lemma 4.2, EV (t, z(t)) is less than or equal to the maximal solution of (34). Therefore, we have

EV (t, z(t)) ≤ 0, t ∈ [t∗, t∗ + a].

The remainder of proof is the same with the one in Theorem 4.2.

Corollary 4.2. Suppose that all conditions of Theorem 4.3 are satisfied except that the inequality (35)
is replaced by the following inequality

LV (t, z(t)) ≤ F (t, V (t, z(t))). (36)

Moreover, assume that F (t, u) is concave with respect to u ∈ R+. Then the same conclusion of Theorem
4.3 holds.

Proof. Since F (t, u) is concave with respect to u, the inequality (36) implies that the inequality (35)
holds. So, the conclusion of Corollary 4.2 is true by Theorem 4.3.

In particular, for any (t, ϕ), (t, ψ) ∈ G ⊂ [t0, T )×L2(Ω,C), if we take V (t, z(t)) = |ϕ−ψ|2 in Corollary
4.2, we have the following result.

Corollary 4.3. Suppose that for any (t, ϕ), (t, ψ) ∈ G,

2(ϕ− ψ)T (f(t, ϕ) − f(t, ψ)) + |g(t, ϕ) − g(t, ψ)|2 ≤ F (t, ∥ϕ− ψ∥2), (37)

where F (t, u) satisfies the conditions in Corollary 4.2. Then the same conclusion of Theorem 4.3 holds.

Remark 4.2. Fedorenko [24] studied the uniqueness of Eq. (1) without delays. The main results in [24]
can be implied by Corollary 4.3.

5 Continuation and Global Existence Theorems

In this section, we will give some continuation and global existence theorems for SFDE (1) under non-
Lipschitz condition with Lipschitz condition being considered as a special case.

Theorem 5.1. Assume that f and g are continuous on [t0, T )×Lp(Ω,C), and the following conclusions
are true.

(I) The initial value problem (1) has a non-continuable solution x(t), whose maximum existing interval
is assumed to be [t0 − τ, β1), where t0 < β1 ≤ T .

(II) The problem (1) has a unique non-continuable solution on [t0 − τ, β1) if its solution is local
existence and uniqueness for any (t∗, ξ∗) ∈ [t0, β1) × Lp(Ω,C).

(III) For any compact set D ⊂ [t0, T ) × Lp(Ω,C),

(t, xt) ̸∈ D, for some t ∈ [t0, β1). (38)
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Proof. The proof of (I) is similar to that of (I) of Theorem 2 in [5], so we omit it.
To prove (II), assume that xt and x̂t are two non-continuable solutions of Eq. (1) through (t∗, ξ∗).

Now we will show that the two solutions have the same maximum existing interval J ⊂ [t0, β1) and

P{xt = x̂t for all t ∈ J} = 1. (39)

If (39) is not true, we can find t1, t2 ∈ [t0, β1) with t1 < t2 such that

P{xt1 = x̂t1} = 1, P{xt = x̂t for all t1 < t ≤ t2} < 1. (40)

It is obvious that (t1, xt1) ∈ [t0, β1) × Lp(Ω,C). By the assumption of (II), there is a neighborhood
U ⊂ [t0, β1) × Lp(Ω,C) such that there is only one solution of (1) through (t1, xt1) in U . However, xt

and x̂t are both the solution of Eq. (1) through (t1, xt1). For small enough ϵ > 0, when 0 < |t− t1| ≤ ϵ,
we have

P{(t, xt) ∈ U} = 1, P{(t, x̂t) ∈ U} = 1,

and
P{xt = x̂t for all 0 < |t− t1| ≤ ϵ} = 1,

which contradicts the inequality of (40). Thus (II) holds.
In (III), the case β1 = T is trivial. So we suppose β1 < T . If the conclusion of (III) is not true, there

are a compact set D ⊂ [t0, T ) × Lp(Ω,C) and a sequence of real numbers tk → β−
1 as k → +∞, and a

ψ ∈ Lp(Ω,C) such that

(tk, xtk
) ∈ D, (β1, ψ) ∈ D, (tk, xtk

) → (β1, ψ), as k → +∞.

Thus, for any ε > 0,
lim

k→+∞
E sup

θ∈[−τ,−ε]
|xtk

(θ) − ψ(θ)|p = 0.

Since xt(θ) = x(t+ θ),−τ ≤ θ ≤ 0, and τ > 0, this implies

E|x(β1 + θ) − ψ(θ)|p = 0, −τ ≤ θ < 0.

Hence lim
t→β−

1

x(t) exists, and x(t) can be continued to [t0 − τ, β1]. This contradicts the fact that the

maximum existing interval of x(t) is [t0 − τ, β1). So, (III) is true.

Remark 5.1. Combining the uniqueness theorems established in section 4, the conclusion (II) of Theo-
rem 5.1 implies that a unique non-continuable solution of SFDE (1) always exists under the conditions
of theorems in Section 4.

Theorem 5.2. Assume that f and g are continuous on [t0, T )×Lp(Ω,C) and quasi-bounded in [t0, T )×
Lp(Ω,C). If x(t) is a non-continuable solution of (1) on [t0 − τ, β1). Then, for every closed bounded set
A ⊂ [t0 − τ, T ) × Lp(Ω,C),

(t, x(t)) ̸∈ A, for some t ∈ [t0, T ). (41)

Proof. The case β1 = T is trivial. So we suppose β1 < T . If the conclusion of the theorem is not true,
there must exist a closed bounded set A ⊂ [t0 − τ, T ) × Lp(Ω,C) such that

(t, xt) ∈ A, for all t ∈ [t0, β1). (42)

From the boundedness of A, there exists a constant α1 > ∥ξ∥Ω such that

∥xt∥Ω < α1, for all t ∈ [t0, β1). (43)

By the quasi-boundedness of f and g, there is a positive constant µ such that

|f(t, xt)|Ω ≤ µ, |g(t, xt)|Ω ≤ µ, for all t ∈ [t0, β1). (44)
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By using the properties of Brownian motion and (44), we obtain for all t1, t2 ∈ [t0, β1),

|x(t1) − x(t2)|Ω ≤ 2|
∫ t2

t1

f(s, xs)ds|Ω + 2|
∫ t2

t1

g(s, xs)dω(s)|Ω

≤ 2µ|t2 − t1| + 2µC
1
p
p |t2 − t1| 1

2 . (45)

This implies that {(t, xt) : t0 ≤ t < β1} belongs to a compact set in [t0, T ) × Lp(Ω,C). This contradicts
Theorem 5.1 and we prove the theorem.

The following corollary is easy implied by Theorem 5.2.

Corollary 5.1. With the same conditions in Theorem 5.2, the following conclusions are true.
(I) If β1 < T , then the solution x(t) of the SFDE (1) explodes in [t0 − τ, β1).
(II) If the solution x(t) of (1) is bounded, then x(t) exists on [t0 − τ, T ).

Theorem 5.3. Suppose that f and g are quasi-bounded, continuous on [t0, T ) × Lp(Ω,C), and there
exists a function F (t, u) ∈ C([t0, T ) ×R+, R+) such that for all t ∈ [t0, T ) and ϕ ∈ Lp(Ω,C)

|f(t, ϕ)|p + |g(t, ϕ)|p ≤ F (t, ∥ϕ∥p), (46)

where F (t, u) is monotone nondecreasing and concave with respect to u ∈ R+ for each fixed t ∈ [t0, T ).
If for any γ > 0 and arbitrary given initial condition, the solution of the scalar differential equation

u′(t) = γF (t, u), (47)

exists on [t0, T ). Then any solution of (1) exists also on [t0 − τ, T ).

Proof. From Theorem 5.1, the SFDE (1) has a solution x(t) = x(t; t0, ξ) with maximum existing interval
[t0 − τ, β1). Now, we only need to prove β1 = T . If β1 < T , by Corollary 5.1, there exists a measurable
subset S ⊂ Ω with P (S) > 0 such that x(t) explodes in [t0 − τ, β1) for all ω ∈ S. For any sufficiently
large integer n, we define the stopping times

τn = β1 ∧ inf{t ∈ [t0, β1) : |x(t)| ≥ n},

where, as usual, we set inf ∅ = ∞. Clearly, τn’s are increasing. So they have the limit β1 = limn→∞ τn.
Since

x(t ∧ τn) = ξ(0) +
∫ t∧τn

t0

f(s, xs)ds+
∫ t∧τn

t0

g(s, xs)dω(s), t ∈ [t0, β1). (48)

By the assumptions, we obtain that

EIS |x(t ∧ τn)|p ≤ 3p−1EIS |ξ(0)|p + 3p−1EIS |
∫ t∧τn

t0

f(s, xs)ds|p

+ 3p−1EIS |
∫ t∧τn

t0

g(s, xs)dω(s)|p

≤ 3p−1EIS |ξ(0)|p + 3p−1(β1 − t0)p−1EIS

∫ t∧τn

t0

|f(s, xs∧τn)|pds

+ 3p−1Cp(β1 − t0)
p−2

2 EIS

∫ t∧τn

t0

|g(s, xs∧τn)|pds

≤ 3p−1EIS |ξ(0)|p + 3p−1KpEIS

∫ t∧τn

t0

F (s, ∥xs∧τn∥p)ds

≤ 3p−1EIS |ξ(0)|p + 3p−1Kp

∫ t

t0

F (s,EIS∥xs∧τn∥p)ds, (49)
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where Kp = (β1 − t0)p−1 +Cp(β1 − t0)
p−2

2 . Let u(t) denote the maximal solution of the scalar differential
equation (47) with γ = 3p−1Kp and the initial value u0 ≥ 3p−1EIS∥ξ∥p.

Similar to the proof of (25)-(27) in Theorem 4.1, we obtain that

EIS |x(t ∧ τn)|p ≤ u(t ∧ τn), t ∈ [t0, β1), for each n ≫ 1. (50)

So,

EIS |x(β1 ∧ τn)|p ≤ u(β1 ∧ τn), for each n ≫ 1. (51)

Since the solution of (47) exists in [t0 − τ, T ), we have u(β1 ∧ τn) < ∞. However, the left side of (51)
approaches to ∞ as n → ∞, which is a contradiction. Consequently, the proof is completed.

By Theorem 5.3 and Lemma 5 in [5], we have the following result.

Corollary 5.2. Suppose that f and g are continuous on [t0, T ) × Lp(Ω,C) and for all t ∈ [t0, T ),
ϕ ∈ Lp(Ω,C)

|f(t, ϕ)|p + |g(t, ϕ)|p ≤ a(t) + b(t)k(∥ϕ∥p),

where a(t), b(t) ∈ C([t0, T ), R+) and k(u) ∈ C(R+, R+) is monotone nondecreasing, concave and satisfies∫ +∞

0

du
1 + k(u)

= +∞. (52)

Then any solution of (1) exists on [t0 − τ, T ).

The following theorems on global existence of the solution of (1) can be implied by the analogous
methods in [5].

Theorem 5.4. Let the conditions of Theorem 5.2 hold. Suppose that there are functions V ∈ C1,2([t0 −
τ, T ) ×Rn, Rm

+ ) and F ∈ C([t0, T ) ×Rm
+ ×Rm

+ , R
m
+ ) such that

max
1≤i≤m

{ lim
|x|→∞

[ inf
t0−τ≤t<T

Vi(t, x)]} = ∞, (53)

ELV (t, x) ≤ F (t,EV (t, x),EV (t, x)), ∀ t ∈ [t0, T ), x ∈ Rn, (54)

where LV = (LV1, . . . ,LVm)T , EV = (EV1, . . . ,EVm)T and R+ = [0,∞).
Assume moreover that F is an Hm-function and for arbitrary given initial condition, the solution u(t)

of the delay differential equation

u̇(t) = F (t, u(t), ū(t)) (55)

exists on [t0 − τ, T ). Then any solution of (1) exists also on [t0 − τ, T ).

Theorem 5.5. Let the conditions of Theorem 5.2 hold. Suppose that there are functions V ∈ C1,2([t0 −
τ, T ) ×Rn, R+) and F ∈ C([t0, T ) ×R+, R+) such that

lim
|x|→∞

[ inf
t0−τ≤t<T

V (t, x)] = ∞,

ELV (t, x) ≤ F (t,EV (t, x)), ∀ t ∈ [t0, T ), x ∈ Rn. (56)

Assume moreover that for arbitrary given initial condition, the maximal solution u(t) of the differential
equation

u̇(t) = F (t, u(t)) (57)

exists on [t0, T ). Then any solution of (1) exists also on [t0 − τ, T ).
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6 Example

In this section we present an example to illustrate our results obtained above. For this, we need the
following lemma which can be implied by the definition of concave function (see Kuang [25, P.369-370]).

Lemma 6.1. Suppose that f(x) : D ⊂ R → R is a concave function. Then, for any xi ∈ D (i = 1, · · · , 4)
with x1 ≤ x2 < x3 ≤ x4, we have

f(x3) − f(x1)
x3 − x1

≥ f(x4) − f(x2)
x4 − x2

. (58)

Furthermore, if x1 < x2 ≤ x3 < x4, we get

f(x2) − f(x1)
x2 − x1

≥ f(x4) − f(x3)
x4 − x3

. (59)

Example 6.1. Consider the following SFDE:

dx(t) = f(t, xt)dt+ g(t, xt)dω(t), t0 ≤ t < +∞, (60)

with the initial condition

xt0 = ξ ∈ L2(Ω,C([−τ, 0], R)), s ∈ [−τ, 0], (61)

In (60) f(t, xt) = a(t)f0(xt) and g(t, xt) = b(t)(sin xt − 1), where a(t), b(t) are continuous functions on
[t0,+∞), and

f0(s) =


0, s = 0,
s ln

1
2 s−2, 0 < s ≤ e−2,

2e−1√
s, s > e−2.

Then f(t, xt) and g(t, xt) are continuous on [t0,+∞)×L2(Ω,C([−τ, 0], R)). It follows from Theorem 3.1
that SFDE (60) and (61) has a local solution xt ∈ L2(Ω,C([−τ, 0], R)).

We note that for s > 0
df0(s)

ds
=

{
−2 ln s−1√

−2 ln s
> 0, 0 < s < e−2,

e−1s− 1
2 > 0, s > e−2,

and
d2f0(s)

ds2 =

{ 2 ln s+1
−2s ln s·ln

1
2 s−2

< 0, 0 < s < e−2,

− 1
2es

− 3
2 < 0, s > e−2.

Moreover, f ′
0(e−2 − 0) = 3

2 > f ′
0(e−2 + 0) = 1. Thus we can find that f0 is monotone increasing and

concave for any s ≥ 0.
To discuss the uniqueness, we will estimate |f0(s2)−f0(s1)| for s1, s2 ∈ R+. Without loss of generality,

let 0 < s1 < s2. Then there are only two cases: s2 −s1 ≤ s1 or s2 −s1 > s1. That is, 0 < s1 < s2 −s1 < s2
or 0 < s2 − s1 ≤ s1 < s2.

For both of the cases, by using the concavity of f0 on [0,∞), it follows from (58) and (59) in Lemma
6.1 that

f0(s2 − s1) − f0(0)
s2 − s1

≥ f0(s2) − f0(s1)
s2 − s1

, (62)

that is
f0(s2) − f0(s1) ≤ f0(s2 − s1). (63)

Then

|f(t, s1) − f(t, s2)| ≤ |a(t)|f0(s2 − s1), ∀ s1, s2 ∈ R+. (64)
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We choose that

h(s) =


0, s = 0,
−s ln s, 0 < s ≤ e−4,

4e−2s
1
2 , s > e−4.

Clearly, h(s) is continuous, monotone increasing and concave for all s ∈ R+.
For any φ1, φ2 ∈ L2(Ω,C([−τ, 0], R)), it follows from (64) that

|f(t, φ1) − f(t, φ2)|2 ≤ a2(t)h(∥φ1 − φ2∥2), ∀ t ≥ t0. (65)

On the other hand, g(t, xt) satisfies

|g(t, φ1) − g(t, φ2)| ≤ b(t)∥φ1 − φ2∥, ∀ t ≥ t0. (66)

Let λ(t) = max{a2(t), b2(t)} and F (t, u) = λ(t)κ(u) where κ(s) = h(s) + s. Then λ(t) is a continuous
function on [t0,+∞) and κ(s) is also continuous, monotone nondecreasing and concave for all s ∈ R+.
Thus, it follows from (65) and (66) that for any φ1, φ2 ∈ L2(Ω,C([−τ, 0], R)) and t ≥ t0

|f(t, φ1) − f(t, φ2)|2 + |g(t, φ1) − g(t, φ2)|2 ≤ a2(t)h(∥φ1 − φ2∥2) + b2(t)∥φ1 − φ2∥2

≤ λ(t)(h(∥φ1 − φ2∥2) + ∥φ1 − φ2∥2)
= λ(t)κ(∥φ1 − φ2∥2). (67)

Moreover, we have ∫
0+

ds
κ(s)

=
∫

0+

ds
−s ln s+ s

= − ln ln e
s

∣∣∣
0+

= +∞.

It follows from (67) and Theorem 4.1 that the local solution xt of SFDE (60) and (61) is unique for
any (t0, ξ) ∈ R×L2(Ω,C([−τ, 0], R)). Then Theorem 5.1 implies that SFDE (60) and (61) has a unique
non-continuable solution.

On the other hand, for any φ ∈ L2(Ω,C([−τ, 0], R)), we get

|f(t, φ)|2 + |g(t, φ)|2 ≤ 2(|f(t, φ) − f(t, 0)|2 + |f(t, 0)|2) (68)
+ 2(|g(t, φ) − g(t, 0)|2 + |g(t, 0)|2)

≤ 2a2(t)h(∥φ∥2) + 2b2(t)∥φ∥2 + 2(|f(t, 0)|2 + |g(t, 0)|2)
≤ 2λ(t)κ(∥φ∥2) + 2b2(t). (69)

We can compute that∫ +∞

0

ds
1 + κ(s)

=
∫ e−4

0+

ds
−s ln s+ s+ 1

+
∫ +∞

e−4

ds
4e−4√

s+ s+ 1

≥
∫ +∞

e−4

ds
4e−4√

s+ s+ 1
= +∞. (70)

Then it follows from Corollary 5.2 that the unique non-continuable solution of (60) and (61) is also global
existence.
Remark 6.1. Since f does not satisfy the Lipschitz condition, the results obtained in [5] are not applicable
to SFDE (60) and (61).

7 Conclusion

This paper is concerned with some basic theories of solutions for SFDEs with non-Lipschitz coefficients.
Firstly, we obtain the Peano’s theorem for SFDEs. Our new theorems need only the continuity condition
to prove a local existence theorem for SFDEs. Then, some new uniqueness theorems are established by
the comparison methods. Finally, we give some continuation theorems and global existence theorems for
SFDEs with non-Lipschitz coefficients. The gained results generalize and improve some of the existing
results mentioned in the literature. An example is presented to illustrate the efficiency of the obtained
results.
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