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1 Introduction

To characterize the regularity of solutions to some partial differential equations(PDEs), Morrey [1] first
introduced classical Morrey spaces Mp,λ which naturally are generalizations of Lebesgue spaces. We also
refer to [2],[3] for the latest research on the theory of Morrey spaces associated with harmonic analysis.
Next, we recall the definition of weighted Lebesgue spaces. By a "weight" we will mean a non-negative
function w that is positive measure a.e. on Rn.

Definition 1. (Weighted Lebesgue space) Let 1 ≤ p ≤ ∞ and w be a weight function; w (x) ≥ 0 and
w ∈ Lloc (Rn), we shall define weighted Lebesgue spaces as

Lp(w) ≡ Lp(Rn, w) =

f : ‖f‖Lp,w =

∫
Rn

|f(x)|pw(x)dx

 1
p

<∞

 , 1 ≤ p <∞.

L∞,w ≡ L∞(Rn, w) =
{
f : ‖f‖L∞,w = esssup

x∈Rn
|f(x)|w(x) <∞

}
.

Then, Komori and Shirai [4] introduced a version of the weighted Morrey space Lp,κ(w), which is
a natural generalization of the weighted Lebesgue space Lp(w), and investigated the boundedness of
classical operators in harmonic analysis (see [4] for details). Motivated by [4], in this paper we shall
introduce the weighted anisotropic Morrey Spaces and investigate the boundedness of the anisotropic
maximal functions on this space.

2 Definition and Notations

Throughout this paper all notation is standard or will be defined as needed.

Let Rn be the n−dimensional Euclidean space of points x = (x1, ..., xn) with norm |x| =
n∑
i=1

x2
i

) 1
2

,

Q = Q (x0, r) denotes the cube centered at x0 with side length r. Given a cube Q and λ > 0, λQ denotes
the cube with the same center as Q whose side length is λ times that of Q. A weight is a locally integrable
function on Rn which takes values in (0,∞) almost everywhere. For a weight function w and a measurable
set E, we define w(E) =

∫
E

w(x)dx, the Lebesgue measure of E by |E| and the characteristic function

of E by χ
E
. Given a weight function w, we say that w satisfies the doubling condition if there exists a

constant D > 0 such that for any cube Q, we have w(2Q) ≤ Dw(Q). When w satisfies this condition, we
denote w ∈ ∆2, for short.
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Let Rn0 = Rn \ {0} and Z be the set of integer numbers. Let also a = (a1, ..., an) be a fixed vector
from Rn with ai > 0, i = 1, . . . , n. Consider a real n× n matrix A with eigenvalues λj , Reλj = aj > 0
and let Q = trA be its trace. The matrix A determines a one-parameter group At = exp(A ln t), t > 0 of
nonsingular transformations of Rn. Denote by diag {a1, ..., an} the matrix with numbers a1, ..., an on the
main diagonal and zero off -diagonal elements and let amax = max

1≤i≤n
ai. Associated with the group At is

the At-homogeneous metric ρ : Rn0 → R+, ρ(Atx) = tρ(x) which is smooth on Rn0 .

For x ∈ Rn0 , let [x]a be a positive solution to the equation
n∑
i=1

x2
i [x]−2ai

a = 1 and |x|a = max
1≤i≤n

|xi|
1
ai .

Note that ρ (x) is equivalent to |x|a, i.e.,

c1 |x|a ≤ ρ (x) ≤ c2 |x|a .

For x ∈ Rn and r > 0 we define the one-parametric parallelepiped

E (x, t) = {y ∈ Rn : |x− y|a ≤ t}
= {y ∈ Rn : |yi − xi| ≤ tai , i = 1, . . . , n}

and by E = E (α) we denote the set of all E (x, t) with x ∈ Rn, t > 0. If a1 = · · · = an, then E (x, t) is a
cube.

All parallelepipeds are assumed to have their sides parallel to the coordinate axes. E = E (x0, r) denotes
the parallelepiped centered at x0 with side length rα1 , . . . , rαn consequently. Given a parallelepiped E and
λ > 0, λaE denotes the parallelepiped with the same center as E whose side length is (λr)a1 , . . . , (λr)an
consequently.

Unless otherwise indicated, the letter C is used for various constants, and may change from one
occurrence to another. First we introduce a weighted anisotropic Morrey space.

Definition 2. (Weighted anisotropic Morrey spaces) Let 1 ≤ p <∞, 0 ≤ κ < 1 and w be a weight.
Then a weighted anisotropic Morrey space is defined by

Lp,κ,a(w) :=
{
f ∈ Lloc(w) : ‖f‖Lp,κ,a(w) <∞

}
,

where

‖f‖Lp,κ,a(w) = sup
E

 1
w (E)κ

∫
E

|f(x)|pw(x)dx

 1
p

and the supremum is taken over all parallelepipeds E on Rn. In the case of a = (1, . . . , 1), we get weighted
Morrey spaces Lp,κ(w) = Lp,κ,1(w).

Remark 1. Alternatively, we could define the weighted Morrey spaces with anisotropic balls instead of
parallelepipeds. Hence we shall use these two definitions of weighted anisotropic Morrey spaces appropriate
to calculation. Also, we could define the weighted Morrey spaces with cubes instead of parallelepipeds.
Moreover, when a1 = · · · = an = 1, then ρ (x) = |x| and α = n. In this case, weighted anisotropic Morrey
spaces is reduced to the weighted Morrey space:

‖f‖Lp,κ,a(w) = ‖f‖Lp,κ(w).

Thus from this viewpoint, Theorem 4 and Theorem 4 below improve the corresponding results in [3],[4].
In other words, in this paper our goal is to extend results in [3],[4].

Remark 2. (1) If w ≡ 1 and κ = λ/n with 0 < λ < n, then Lp,κ(w) = Lp,λ(Rn) is the classical Morrey
spaces. If w ≡ 1 and κ = λ

|a| with 0 < λ < |a|, |a| = a1 + · · · + an, then Lp,κ,a(w) = Lp,λ,a(w) the
anisotropic Morrey spaces. (2) Let w ∈ ∆2. If κ = 0, then Lp,0(w) = Lp(w) is the weighted Lebesgue
spaces. If κ = 1, then Lp,1(w) = L∞(w) by the Lebesgue differentiation theorem with respect to w (see
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[5]). (3) In the one-dimensional case, let a weight w (x) = |x|α for some − 1
2 < α < 0 and a function

f (x) = χ(0,1) |x|
− 1

2 . Then f ∈ L1,
α+ 1

2
α+1 (w) \ L2(α+1) (w).

Let f ∈ Lloc (Rn). The anisotropic maximal function Mf and the sharp maximal function f# are
defined by

Mf(x) = sup
t>0
|E(x, t)|−1

∫
E(x,t)

|f(y)|dy

and
f# (x) = sup

t>0
|E(x, t)|−1

∫
E(x,t)

|f(y)− fE(x,t)|dy,

where fE(x,t) = |E(x, t)|−1 ∫
E(x,t)

|f(y)|dy.

If a1 = · · · = an, then E (x, t) is a cube and Mf becomes the usual Hardy-Littlewood maximal
function. For r > 0, we denote Mrf(x) by (M |f |r (x))

1
r .

Let w be a weight. Mw denotes the anisotropic maximal operator with respect to the measure w (x) dx
defined by

Mwf(x) = sup
E

1
w (E)

∫
E

|f(y)|w (y) dy (1)

Here and after, Ap denotes the Muckenhoupt classes (see [3]). In other words, let 1 < p < ∞. One
says that w (x) ∈ Ap (Rn), if the following condition holds:

[w]Ap := sup
E

[w]Ap(E)

= sup
E

 1
|E|

∫
E

w(x)dx

 1
|E|

∫
E

w(x)1−p′dx

p−1

<∞, (2)

where the supremum is taken with respect to any parallelepiped E and p′ = p
p−1 . The condition (2)

is called the Ap-condition, and the weights which satisfy it are called Ap-weights. The property of the
Ap-weights implies that generally speaking, we should check whether a weight w satisfies an Ap-condition
or not. The expression [w]Ap is also called characteristic constant of w. For the case p = 1, w ∈ A1 (Rn) if

1
|B|

∫
B

w(x)dx ≤ C inf
x∈B

w (x) ,

and the infimum of these constant C is called the A1 constant of w and denoted by [w]A1 . Since the
Ap classes are increasing with respect to p, the A∞ class of weights is defined in a natural way by
A∞ (Rn) =

⋃
1≤p<∞

Ap (Rn) and the A∞ constant of w (x) ∈ A∞ (Rn) is the smallest of the infimum of the

Ap constant such that w (x) ∈ Ap (Rn), [w]A∞ = inf
1≤p<∞

[w]Ap and [w]A∞ ≤ [w]Ap .

It is easy to verify that, ρ (x)α ∈ Ap if and only if − |a| < α < |a| (p− 1) for 1 < p < ∞ and
ρ (x)α ∈ A1 if and only if − |a| < α ≤ 0.

3 Lemmas and Well Known Results

In this section, we shall prove some lemmas and describe the well-known result about the weighted Lp
spaces.

Theorem 1. ([[6], Theorem 2.6, p. 146]) If 1 < p <∞ and w ∈ ∆2, then the operator Mw is bounded on
Lp(w).

The next lemma plays an important role in our proofs of theorems. We say that w satisfies the reverse
doubling condition if w has the property (3) of the following lemma.
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Lemma 1. ([4])If w ∈ ∆2, then there exists a constant D1 > 1 such that

w (2E) ≥ D1w (E) . (3)

Proof. Fix a parallelepiped E = E (x0, r). Then we can choose a parallelepiped R ⊂ 2E with side length
r
2 which is disjoint from the parallelepiped E. Hence

w (E) + w (R) ≤ w (2E) .

On the other hand, since E ⊂ 5R we have w (E) ≤ w (5R) ≤ D3w (R), where D is a doubling constant.
Therefore we have

w (E) + w (E)
D3 ≤ w (2E) .

Lemma 2. ([7]) The following statements hold:
(1) If w ∈ Ap for some 1 ≤ p <∞, then w ∈ ∆2. Moreover, for all λ > 1 we have

w(λE) ≤ λnp[w]Apw(E).

(2) Let w ∈ Ap for some 1 ≤ p <∞. Then we have

Mf(x) ≤ [w]
1
p

Ap
(Mw (|f |p) (x))

1
p .

Proof. (1) Let w ∈ Ap for some 1 ≤ p <∞ and λ > 1. Then

w (λE)
w (E) =

(
|λE|
|E|

)p [w]Ap (λE)
[w]Ap (E)

∫
E

w (x)1−p′
dx

p−1

∫
λE

w (x)1−p′
dx

p−1

≤ λnp[w]Ap .

(2) Let w ∈ Ap for some 1 ≤ p <∞. Applying the Hölder’s inequality, we get

Mf(x) = sup
E

1
|E|

∫
E

|f(x)|dx

≤ sup
E

1
|E|

∫
E

|f (x)|p w(x)dx

 1
p
∫
E

w(x)1−p′dx

 1
p′

= sup
E

 1
w (E)

∫
E

|f (x)|p w(x)dx

 1
p
∫
E

w(x)1−p′dx

 1
p′ (

w (E)
|E|

) 1
p

=

sup
E

1
w (E)

∫
E

|f (x)|p w(x)dx

 1
|E|

∫
E

w(x)dx

∫
E

w(x)1−p′dx

p−1


1
p

≤ [w]
1
p

Ap
(Mw (|f |p) (x))

1
p .

4 Anisotropic Maximal Function

In this section, we shall state the boundedness of the anisotropic maximal operators on weighted anisotropic
Morrey Spaces.
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Theorem 2. (Our main result) If 1 < p <∞, 0 < κ < 1 and w ∈ ∆2, then the operator Mw is bounded
on Lp,κ,a(w).

Proof. Fix a parallelepiped E ⊂ Rn. We decompose f = f1 + f2, where f1 = fχ3E . Since Mw is a
sublinear operator, we have∫

E

Mwf (x)p w(x)dx

 1
p

≤

∫
E

Mwf1 (x)p w(x)dx

 1
p

+

∫
E

Mwf2 (x)p w(x)dx

 1
p

= I + II.

For the term I, since Mw is bounded on Lp(w) (see Theorem 3), we obtain

I ≤

∫
E

Mwf1 (x)p w(x)dx

 1
p

≤ C

∫
3E

|f(x)|pw(x)dx

 1
p

≤ C ‖f‖Lp,κ,a(w) w (E)
κ
p .

Next we estimate the term II. By simple geometric observation, we have for any x ∈ E, note that for
all Ẽ such that x ∈ Ẽ, Ẽ ∩ (3E)c 6= ∅ there exists R such that E ⊂ 3R and 1

3R ⊂ Ẽ ⊂ R.
Then w

(
Ẽ
)
≥ w

( 1
3R
)
≥ 1

D1
w (R) and

Mwf2(x) ≤ D1 sup
R:E⊂3R

1
w (R)

∫
R

|f(y)|w (y) dy.

Note that

1
w (R)

∫
R

|f(y)|w (y) dy ≤ 1
w (R)

∫
R

|f (y)|p w(y)dy

 1
p
∫
R

w(y)dy

 1
p′

≤ 1
w (R)1− 1

p′

∫
R

|f (y)|p w(y)dy

 1
p

= 1
w (R)

1
p

 1
w (R)κ

∫
R

|f (y)|p w(y)dy

 1
p

w (R)
κ
p

≤

 1
w (R)κ

∫
R

|f (y)|p w(y)dy

 1
p

w (R)
κ−1
p ≤ C ‖f‖Lp,κ,a(w) w (R)

κ−1
p ,

if E ⊂ 3R. So we obtain

II =

∫
E

Mwf2 (x)p w(x)dx

 1
p

≤

∫
E

sup
x∈R

1
w (R)

∫
R

|f(y)|w (y) dy

p w(x)dx


1
p

≤

∫
E

[
c ‖f‖Lp,κ,a(w) w (E)

κ−1
p

]p
w(x)dx

 1
p

≤ c ‖f‖Lp,κ,a(w) w (E)
κ−1
p

∫
E

w(x)dx

 1
p

= c ‖f‖Lp,κ,a(w) w (E)
κ
p .

Therefore
II ≤ C ‖f‖Lp,κ,a(w) w (E)

κ
p .

This completes the proof.
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Corollary 1. ([4],Theorem 3.1) If 1 < p < ∞, 0 < κ < 1 and and w ∈ ∆2, then the operator Mw is
bounded on Lp,κ(w).

Theorem 3. (Our main result) If 1 < p < ∞, 0 < κ < 1 and w ∈ Ap, then the anisotropic maximal
operator M is bounded on Lp,κ,a(w).

If p = 1, 0 < κ < 1 and w ∈ A1, for all t > 0 and any parallelepiped E,

w (x ∈ E : Mf (x) > t) ≤ C

t
‖f‖L1,κ,a(w) w (E)κ .

Proof. Let 1 < p <∞. By the reverse Hölder inequality (see [8]), there exists 1 < r < p such that w ∈ Ar.
Hence it follows from Lemma 3 (2) and Theorem 4 that 1

w (E)κ
∫
E

Mf (x)p w(x)dx

 1
p

≤ C

 1
w (E)κ

∫
E

Mw (|f |r) (x)
p
r w(x)dx

 1
p

≤ C ‖Mw (|f |r)‖
1
r

L p
r
,κ,a

(w) ≤ C ‖|f |
r‖

1
r

L p
r
,κ,a

(w)

= c

sup
E

 1
w (E)κ

∫
E

|f(x)|r(
p
r )w(x)dx

 r
p


1
r

= C ‖f‖Lp,κ,a(w) .

When p = 1, we use the Fefferman-Stein maximal inequality∫
{x:Mf(x)>t}

ϕ (x) dx ≤ C

t

∫
Rn

|f (x)| (Mϕ) (x) dx

for any functions f and ϕ ≥ 0 (see [9],[6]).
Fix a parallelepiped E = E (x0, r). Put ϕ (x) = w (x)χE (x). Then we have∫

{x:Mf(x)>t}

χE (x)w (x) dx ≤ C

t

∫
Rn

|f (x)|M (wχE) (x) dx

= C

t

∫
3E

+
∫

(3E)c

 = C

t
{I + II}

for all t > 0.
We now estimate the term I. Since w ∈ A1, it follows that

M (wχE) (x) ≤M (w) (x) ≤ Cw (x) .

So it follows that
I ≤ Cw (3E)κ ‖f‖L1,κ,a(w) ≤ Cw (E)κ ‖f‖L1,κ,a(w) .

To estimate the term II, we consider the form

1
|R|

∫
R∩E

w (y) dy

for x ∈ (3E)c ∩R and R ∩ E 6= ∅. By simple geometric observation, we have

1
|R|

∫
R∩E

w (y) dy ≤ Cn

 1
|x− x0||a|a

∫
E

w (y) dy

 ≤ Cn |x− x0|−|a|a w (E) .
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Therefore we obtain
M (wχE) (x) ≤ Cn |x− x0|−|a|a w (E) .

Since w ∈ A1, we have w ∈ ∆2 by Lemma 3 (1). Using Lemma 3, we have w (3E) ≥ w (2E) ≥ D1w (E)
with D1 > 1. Thus we can estimate the term II as follows:

II ≤ Cw (E)
∫

(3E)c

|f (x)|
|x− x0||a|a

dx = C
∞∑
j=1

∫
3j+1E\(3jE)

|f (x)|
|x− x0||a|a

dx

≤ Cw (E)
∞∑
j=1

1
|3jE|

∫
3j+1E

|f (x)| dx

≤ Cw (E)
∞∑
j=1

1
|3jE|

(
esssup
x∈3j+1E

1
w (x)

) ∫
3j+1E

|f (x)|w (x) dx

= Cw (E)
∞∑
j=1

1
|3jE|

∣∣3j+1E
∣∣

w (3j+1E)

∫
3j+1E

|f (x)|w (x) dx

= Cw (E)κ
∞∑
j=1

w (E)1−κ

w (3j+1E)1−κ
1

w (3j+1E)κ
∫

3j+1E

|f (x)|w (x) dx

≤ Cw (E)κ ‖f‖L1,κ,a(w)

∞∑
j=1

w (E)1−κ

w (3j+1E)1−κ ≤ Cw (E)κ ‖f‖L1,κ,a(w) .

The last series converges since the reverse doubling constant is larger than one (see Lemma 3). This
completes the proof.

Corollary 2. ([4],Theorem 3.2) If 1 < p <∞, 0 < κ < 1 and w ∈ Ap, then the Hardy-Littlewood maximal
operator M is bounded on Lp,κ(w). If p = 1, 0 < κ < 1 and w ∈ A1, for all t > 0 and any cube Q,

w ({x ∈ Q : Mf (x) > t}) ≤ C

t
‖f‖L1,κ(w) w (Q)κ .

Corollary 3. ([3],Theorem 2) Let 1 < p < ∞, 0 ≤ κ < 1 and w ∈ Ap. If A is a (not necessarily
quasi-homogenous) pseudo-differential operator of order 0, then the operator A is bounded on Lp,κ(w).

Corollary 4. ([3], Corollary 1) Let m ∈ N, 1 ≤ j ≤ n, 1 < p < ∞, 0 ≤ κ < 1, w ∈ Ap and a(x, ξ) =
ξmj

(1+|ξ|2)
m
2
. Then ∥∥∥F−1(ξmj (1 + |ξ|2)−m2 Ff)

∥∥∥
Lp,κ(w)

≤ C ‖f‖Lp,κ(w) .
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