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Abstract. This paper describes the logic and creativity needed in order to have high probability of 
solving discrete optimization problems on a quantum annealing computer. Current features of 
quantum computing via annealing are discussed. We illustrate the logic at the forefront of this new 
era of computing, describe some of the work done in this field, and indicate the distinct mindset that 
is used when programming this type of machine. The traveling salesman problem is formulated for 
solving on a quantum annealing computer, which illustrates the methods for this computer.  
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1   Introduction 

Quantum computing has been called an emerging technology that is a paradigm shift from digital 
computing. From our viewpoint, it is more than a shift; it is an entirely new way to solve optimization 
problems. Old problems are being reformulated so that quantum techniques can be applied with high 
probability of finding a global minimum. Hardware is being built that is stable. Operating systems are 
being designed that include error correction. Several small quantum computers are available to 
researchers.  

The design and fabrication of several generations of quantum annealing computers (QACs) to solve 
hard optimization problems has aroused interest in their expected speedup [8, 14, 26], real-world 
applications [1, 2, 4, 9, 21, 22, 25], and benchmarks [14 - 16]. Current research is focused on framing old 
problems to quantum annealing [10, 18, 30], embedding problems into quantum bits and their 
connections [5, 13], suppressing errors due to the nature of the apparatus [11, 21, 24], scaling large data 
to fit QACs [23], and comparing quantum annealers with thermal annealers [19, 21]. The above list of 
topics and [32] indicate that we are working in an interdisciplinary field. 

This paper shows the logic for implementing discrete optimization problems on a D-Wave quantum 
annealing computer (QAC). Some of these techniques are scattered on three websites [3, 6, 23] and we 
develop others. This paper brings together the basic principles for solving discrete optimization problems 
on a D-Wave QAC with great likelihood. 

D-Wave’s initial processor had 128 quantum bits (called qubits). It has been upgraded and now has
2048 qubits. There are limited connections between qubits. Johnson and his colleagues [12] have an 
excellent description and diagram of the physical makeup of a qubit in a D-Wave computer. When super 
cooled, a qubit reaches its low energy state. Thus, when a family of qubits is associated with the 
variables in an optimization problem, the low energy state of the qubits corresponds to binary values 
associated with the variables, thus showing which variables form a minimum for the problem. Globally, 
this can be regarded as examining all solutions simultaneously and selecting a near minimum one. 
Authors [7, 12, 13, 20] describe D-Wave QACs. 

In essence, a QAC does one thing: it finds near optimal answers to discrete minimization problems 
extremely fast. In order to do this, it needs an objective function and constraints expressed with binary 
variables. This requires declaring the variables, their types, and their coefficients based on the problem. 
There are no procedural instructions, such as “if X, then do Y.” 

A QAC is not the popularized circuit model on which Shor’s factorization algorithm is designed to 
operate [28]. Shor’s algorithm factors products of prime numbers in time growing polynomially in the 
size of the integer to be factored. 

82
Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018 

https://dx.doi.org/10.22606/jaam.2018.33002

JAAM Copyright © 2018 Isaac Scientific Publishing



2   Outline and Terminology 

Section 3 of this paper contains the unique input function for a QAC, equation (2). In Section 4 
elementary Boolean operations are translated into QAC inputs. Penalty functions are introduced in 
Section 5. Logic gates are the topic in Section 6. The paper concludes in Section 7 with a formulation of 
the traveling salesman problem for quantum annealing. 

 

Figure 1. Terminology and relationships for quantum annealing computers. 

3   Ising Model for Quantum Annealing 

The theory for quantum annealing [7] implies that the qubits will achieve an optimal state of low energy 
when super cooled. This is represented by the following expression where an initial Hamiltonian 0H  
evolves to its low energy state in a final Hamiltonian pH  according to 

 ( ) 01  for 0p
t tH t S H S H t T
T T

    
= − + ≤ ≤         

  (1) 

as ( )S τ  increases from ( ) 0S τ =  to ( )1 1S =  and if 0H  and pH  do not commute [18]. In theory, T  is 
the time imposed by the Scrödinger equation for the initial Hamiltonian to evolve to its low energy state 
[27]. On a D-Wave QAC, time T  is in microseconds. The Hamiltonian 0H  is established by D-Wave 
for all problems. The Hamiltonian pH  represents the combinatorial problem to be solved and is an input 
to a QAC. Determining pH  is a subject of this paper. Besides pH , other inputs include the number of 
samples of the problem, the time T  within a given range, and scaling factors. Essentially, a result 

( )H t  is a sample from a Boltzmann distribution. 
A physical implementation of (1) does not strictly meet the conditions for quantum annealing. In 

addition, values loaded by the user may differ slightly from the machine interpretation of the numbers. 
These difficulties are overcome by making multiple samples and choosing a valid solution that has 
minimum energy. 

The Ising objective function [13, 17, 23, 29] for the optimal state pH  in (1) is 

 
 

min ?i ij j i i
i j i

s J s h s
>

 
+  

 
∑ ∑   (2) 

where i and j are qubits and si is the final spin state of qubit i. Also hi is the energy strength for qubit i 
and Jij is the coupling energy between qubits i and j. The problem to be minimized dictates the values 
for the coefficients hi and Jij. An optimal state for (2) is an assignment of ±1 to the spin states si and sj 
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by the QAC so that (2) is minimized. 
The interface between the variables and the qubits in a QAC is the Hamiltonian Hp, which is a square, 

symmetric matrix with a row and column for each spin variable 𝑠𝑖 that applies to the problem. The 
entries in Hp originate in the minimization problem. The diagonal entries of Hp are the energy strengths 
hi assigned to qubits. The off-diagonal entries are the coupling energies Jij assigned to the connections 
between qubits. The entries in Hp are adjusted for penalty functions that will be described in Section 5. 

In summary, (2) is the unique format for a discrete optimization problem to be processed on a QAC. 
The variables hi and Jij in (2) are from the problem and are inputs to a QAC. 

4   Boolean Applications 

Let i and j designate qubits in a QAC. We will use a transcribed model where { }0,, 1i jx x ∈ . This is 
convenient for Boolean algebra. If { }1,  1is ∈ −  and { }0,  1ix ∈ , the relationship 2 1i is x= −  equates the 

spin state model (2) and a Boolean model. So we may replace is  and js  in (2) with ix  and jx , and 
assume that the values 0, 1 are assigned to the qubits in the minimization process. Next we will show 
how to set some Boolean operations so they fit (2) and can be used on a QAC. 

Suppose we want to set the state ix  of qubit i to be a constant 0 or 1. Let hi be the local field at i 

where iih x  is a term in (2). If we set hi sufficiently less than 0, then ix  will be minimized to 1 in the 
annealing process represented by (2). Or if we set hi sufficiently greater than 0, then ix  will be 
minimized to 0. 

Suppose we want to set   k ix x=  which represents the Boolean states of qubits k and i being identical, 
i.e., we want two physical qubits, each with 5 connections to other qubits, to form a logical qubit with 8 
connections to other qubits 1 . The equation   k ix x=  does not conform to (2). So we look for a 

relationship between kx  and ix  that have the same value, say v , when   k ix x=  and at least 1v +  
when k ix x≠ . This is represented by the catalog 

kx   ix   Value 
1 1 v   
1 0 at least 1v +   
0 1 at least 1v +   
0 0 v  

From (2) there are three variables that can be used: ih , kh  and ikJ . A solution is 2 i k i kx x x x− + +  

which minimizes at 0v =  if and only if   k ix x= . Thus 1ih = , 1kh =  and  2ikJ =− . This is the first 
entry in Table 2. 

Table 1. Truth tables for basic Boolean operations on two binary variables 

  Conjunction (And) Disjunction (Inclusive Or) Implication Exclusive Or Equivalence 

ix   jx      i jx x∧      i jx x∨      i jx x→    i jx x⊕      i jx x≡   

1 1 1 1 1 0 1 
1 0 0 1 0 1 0 
0 1 0 1 1 1 0 
0 0 0 0 1 0 1 

1 Physical connectivity between qubits is limited.   The connections between 8 qubits in a unit in a D-Wave QAC 
form a complete bipartite graph on 4 vertices 4,4K  [13 Figure 1, 14 Figure 1].  In addition, each qubit connects to 
one qubit in an adjacent unit.  The 1152 qubit chip is composed of a two dimensional array of 12 × 12 units, each 
containing 8 qubits. 
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Let kx  be the negation of kx  where 0kx =  if 1kx =  and 1kx =  if 0kx = . The quantum annealing 
adjustments for this operation are in Table 2. 

Table 1 contains the truth tables for the Boolean operations addressed in Table 2. 

Table 2. Expressions for Boolean logic 

Boolean Logic Corresponding Equation(s) Corresponding Penalty Function 
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In Table 2 expressions for Boolean logic are translated to penalty functions that can be implemented 

on a QAC. The notation a  represents an ancillary qubit so that   a i jx x x=  and is introduced to reduce 
a product of three variables to a quadratic term. This is necessary because the Ising objective function 
(2) is quadratic. 

The penalty functions for ,∧ ∨  and ⊕  are from [23 Table 4.1]. The penalty function for ≡ is the 
negation of the penalty function for ⊕  added to 4 times the penalty function for ∧ . Similarly, the 
penalty function for → is a sum of two penalty functions. The first is derived from the algebraic 
equation for →. The other is 3 times the penalty function for ∧ . 

5   Penalty Functions 

Equations, inequalities and expressions of Boolean logic cannot be entered directly in (2) for computing. 
Instead, penalty functions are used to represent them. We will explain how to convert to penalty 
functions. 

Table 2 shows a conversion of expressions for Boolean logic to penalty functions. To verify that a 
penalty function represents its Boolean logic, it is necessary to show that the penalty function yields the 
same value, say v, for each assignment of truth values to the expression of the Boolean logic, and that 
the penalty function yields at least v + 1 for each assignment of false values to the expression of the 
Boolean logic. The latter is needed because (2) is a minimization statement. 

A constraint that is an equation can be changed to a penalty function by noting that a parable which 
opens upward has a minimum value at its vertex. We convert an equation to a generalized parable by 
reversing the algebraic sign of all terms on one side of the equation and deleting the equality sign. Next, 
we square the result, simplify it with the property 2x x=  for binary variables 0 and 1, and delete the 
constant term so that the minimum value is 0. (A minimum value of 0 does not change when the 
penalty function is multiplied by a positive scalar.) It is easily seen that a binary solution occurs for the 
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constraint equation if and only if its penalty function attains a global minimum at this solution. We 
illustrate this general method for the equation  k ix x=  from Section 4. 

Step 1. Reverse the algebraic sign of the term on the left side of the equation and delete the equality 
sign:   k ix x− + . 

Step 2. Square the result: ( )2 2 2  2k i i k i kx x x x x x= −− +++ . 
Step 3. Simplify by the property 2x x=  for binary variables 0 and 1: 2 i k i kx x x x+− +  which is the 
result in Table 2. 
Step 4. Delete the constant term. This step is not needed for this example. 
A constraint inequality can be converted to a constraint equation by inserting slack variables, as is 

done in the simplex algorithm for linear programming. 
See [23 Section 4.1.3] for a systematic method to construct constraint equations and constraint 

inequalities for a specific problem. It also has techniques to derive penalty functions. 
The largest degree of the terms in (2) is 2. If a term in a penalty function has degree greater than 2, 

the degree can be reduced by introducing an ancillary qubit that represents the product of two variables. 
There are pitfalls, such as an ancillary qubit substituted in a quadratic term may destroy the logic of 
the penalty function. The penalty functions for Boolean operations ,→ ⊕  and ≡  in Table 2 require an 
ancillary qubit. These penalty functions were tested for false values of the dependent variables kx  and 

ax  occurring simultaneously, in addition to testing them separately. 

6   Logic Gates 

A logic gate is a device, ideal or real, that implements a Boolean operation [5, 31]. Logic gates are 
usually separate steps in the popularized circuit model of quantum computing. However, in quantum 
annealing, according to (2) there are no separate steps. This implies that a logic gate in quantum 
annealing needs to be part of the single input. As result, logic gates do not seem to appear in quantum 
annealing unless they are an intrinsic part of the minimization problem. We will discuss a gate for one 
of the five basic Boolean operations in Table 1, Exclusive Or. 

The controlled-NOT gate (also called the CNOT gate or XOR gate) in a circuit model quantum 
computer negates the target bit if and only if the control bit is 1. The truth table for the CNOT gate is: 

Input Output 
Control Target Control Target  

0 0 0 0 
0 1 0 1 
1 0 1 1 
1 1 1 0 

The CNOT gate is fundamentally important in a circuit model quantum computer, because all gates can 
be generated by one-bit gates and the CNOT gate [28 page 1489]. 

The truth table for Exclusive Or in Table 1 is identical to the truth table for the CNOT gate. 
Therefore, a natural way to implement a CNOT gate for a QAC is to use Exclusive Or. Thus, a CNOT 
gate in quantum annealing needs to act like the penalty function for ⊕  in Table 2. 

The CNOT gate in the circuit model is composed of two qubits, a target and a control. According to 
Table 2, since the CNOT gate equates to ⊕ , the CNOT gate in a QAC uses four qubits. They are 
target 𝑖, control 𝑗, result 𝑘 and ancillary 𝑎. We will form a Hamiltonian for a CNOT gate using these 
four qubits. Let 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 and 𝑥𝑎 be their corresponding value in {0, 1}. From Table 2 the penalty 
function for the CNOT gate is 
 ( ) ( )2 4 42 4i j i j k i j a k a i j k ax x x x x x x x x x x x x x+ − + + ++ + +−   (3) 

In (3), a i jx x x=  and is used to reduce i j kx x x  to a quadratic term which is required by (2). The 
coefficients of the linear terms in (3) are placed on the diagonal of the Hamiltonian and the coefficients 
of the quadratic terms are placed off the diagonal. Based on (3), the Hamiltonian for the CNOT gate is: 
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 i   j   k   a   
i   1 2 -2 -4 
j  2 1 -2 -4 
k  -2 -2 1 4 
a  -4 -4 4 4 

A QAC assigns values to , ,i kjx x x  and ax  from {0, 1} so that (3) is minimized. 
A CNOT gate is reversible in quantum computing. After the gate is executed, if the control is applied 

to the result, then the original target is recovered. 
In summary, in quantum annealing a logic gate may be regarded as a Hamiltonian that implements 

its corresponding Boolean operation. This Hamiltonian is combined with a Hamiltonian that represents 
an optimization problem for a single input to a QAC. 

7   The Traveling Salesman Problem 

To illustrate the logic in this paper, the traveling salesman problem (TSP) is formulated for 
implementation on a QAC. This is an improvement and expansion of the presentations in [30] by 
incorporating the redundancy of one city. Given a set of cities and the directed distances between each 
pair of cities, the task of the TSP is to find a shortest route that visits each city exactly once and 
returns to the starting city.  

Let the cities be designated 1, 2, …,n. Let ijd  be the distance from city 𝑖 to city j . We do not assume 
that jij id d= . A tour is a cyclic permutation of the cities, i.e., a permutation that has one cycle. The 
TSP asks for a tour of the cities that returns to the starting city and minimizes the distance traveled, 
called an optimal tour. As in [30], our binary variables for the TSP are itV  representing city i  occurring 
in position t  of a tour. For an n-city problem, the indices satisfy 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑡 ≤ 𝑛. We want 
city 1 to be in the first position of all tours. This is accomplished by setting 11 1V =  and not using 1iV  
for 2 ≤ 𝑖 ≤ n. 

A subtour is a cyclic permutation of a proper subset of the cities. Subtours must be prevented from 
spoiling the selection of an optimal tour. Both [18, 30] do this in the objective function by having the 
subscripts on the binary variables represent the position of a city in a tour. Moreover, the distance from 
city i to city j counts toward the optimal tour length only when cities i and j are consecutive in the tour 
and city i precedes city j. A bonus of this formulation is that both symmetric and asymmetric TSPs can 
be represented. 

Employing the pattern of (2), our objective function for the TSP is 

 1 11 2

1

, 1 1 11 11
2 2, 22

;and  1
n n n

ij it j t i in
t ii j

j
j

j

j

i

n

d V V d V V d V V V
−

=
+

= ==
≠

+ =+ ∑ ∑∑∑   

This is equivalent to 
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1 , 1 1
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n n n n

j ij j t i
j i j t i

j n

i

it i

j

E d V d V V d V
−

+
= = = =

≠

+ += ∑ ∑∑ ∑   (4) 

We want the D-Wave processor to assign 0, 1 to the binary variables  itV  so that (4) is minimized and 
the variables are subject to the following constraints. 

 }{
2

For each 2,3,..., 1
n

it
i

t n V
=

∈ =∑   (5) 

 }{
2

For each 2,3,..., 1
n

it
t

i n V
=

∈ =∑   (6) 

Constraint (5) ensures that each position 2t ≥  has exactly one city in an outcome. Constraint (6) 
ensures that each city 2i ≥  occurs exactly once in an outcome. The notation in (4) ensures that 
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subloops do not occur. 
Constraints (5) and (6) need to be modified so they conform to (2). Using the steps in Section 5, the 

result for constraint (5) is 

 { }
1

2 2 1

 for 2,3,...2 .,
n n n

t it jt kt
i j k j

F V V t nV
−

= = = +

= − + ∈∑ ∑∑   (7) 

We note that tF  attains its minimum when 1itV =  for exactly one subscript i  and 0itV =  for all 
subscripts j i≠ . Thus, tF  attains its minimum when constraint (5) is true. 

Similarly, constraint (6) can be implemented in the form of (2) by 

 { }
1

2 2 1

 for 2,3,...2 .,
n n n

i it ir is
t r s r

G V V i nV
−

= = = +

= − + ∈∑ ∑∑   (8) 

The input to the D-Wave quantum computer is 

 1 2
2 2

* * .
n n

t i
t i

E F Gλ λ
= =

 
+ +  

 
∑ ∑   (9) 

The iλ  are Lagrange multipliers to scale the pieces of the input in order to control errors and improve 
precision. 

The TSP as formulated in (4) – (6) has been verified on a D-Wave QAC for n = 6, 7, and 8, 1 1λ = ,

2λ =1500 and distances between real cities ranging from 302 to 2230. When n = 9, the embedding 
requires more than 1200 qubits. The D-Wave software “dw” was used. It has the advantage of finding 
an embedding of the variables into the qubits, avoiding the Hamiltonian matrix which is tedious to 
construct, and determining whether solutions satisfy assertions that describe the constraints. 

However, the D-Wave processor and the “dw” software have difficulties. They sample from 1000 
solutions in order to have a high probability of finding a valid solution. However, sometimes all 1000 
solutions of a TSP are invalid. Also, the documentation about scaling factors seems sketchy and 
incomplete. We set the parameters by experimenting without fully knowing what was being affected. 

8   Conclusion 

We have shown that computation on a quantum annealing computer has rich mathematical methods 
which are different than those for digital computing. The major source of the difference is the single 
input statement (2) for computing on a quantum annealer. 
 
Acknowledgments. Several colleagues are thanked for comments and suggestions that significantly 
improved previous versions of the manuscript. Denny Dahl and Joel Gottlieb of D-Wave Systems are 
thanked for helping to install the TSP on a D-Wave quantum annealing computer. The Lord Jesus is 
thanked for providing motivation and financial resources to investigate these topics and write this paper. 

References 

1. S. H. Adachi and M. P. Henderson. 2015. Application of quantum annealing to training of deep neural networks. 
arXiv:1510.06356, 18 pages. 

2. M. Benedetti, J. Realpe-Gomez, R. Biswas, and A. Perdomo-Ortiz. 2016. Estimation of effective temperatures in 
quantum annealers for sampling applications: A case study with possible applications in deep learning. Phys. Rev. 
A 94, 022308. 

3. Z. Bian, F. Chudak, W. G. Macready, G. Rose. 2010. The Ising model: teaching an old problem new tricks. D-
Wave Systems. http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf 

4. Z. Bian, F. Chudak, W. G. Macready, L. Clark, F. Gaitan. 2013. Experimental determination of Ramsey 
numbers. Phys. Rev. Lett. 111, 130505. 

5. Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, A. Roy. 2014. Discrete optimization using quantum 
annealing on sparse Ising models. Front. Phys. 2 Article 56. 

88 Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

JAAM Copyright © 2018 Isaac Scientific Publishing



6. E. Boros and P. L. Hammer. 2001. Pseudo-Boolean Optimization. 
http://rutcor.rutgers.edu/~boros/Papers/2002-DAM-BH.pdf 

7. S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, M. Troyer. 2014. 
Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10, 218-224. DOI: 
10.1038/nphys2900 

8. S. Boixo, G. Ortiz, R. Somma. 2015. Fast quantum methods for optimization. Eur. Phys. J. Special Topics 224, 
35-49. 

9. M. Henderson, J. Novak, T. Cook. 2018. Leveraging adiabatic quantum computation for election forecasting. 
arXiv:1802.00069 

10. V. Horan, S. Adachi, S. Bak. 2016. A comparison of approaches for finding minimum identifying codes on 
graphs. Quantum Inf. Process. 15, 1827-1848. 

11. Z. Jiang and E. G. Rieffel. 2017. Non-commuting two-local Hamiltonians for quantum error suppression. 
Quantum Inf. Process. 16, Article 89. https://doi.org/10.1007/s11128-017-1527-9 

12. M. W. Johnson et al. 2011. Quantum annealing with manufactured spins. Nature 473, 194-198.  
DOI: 10.1038/nature10012 

13. K. Karimi, N. G. Dickson, F. Hamze, M. H. S. Amin, M. Drew-Brook, F. A. Chudak, P. I. Bunyk, W. G. 
Macready, G. Rose. 2012. Investigating the performance of an adiabatic quantum optimization processor. 
Quantum Inf. Process. 11, 77-88. 

14. H. G. Katzgraber, F. Hamze, R. S. Andrist. 2014. Glassy chimeras could be blind to quantum speedup: 
Designing better benchmarks for quantum annealing machines. Phys. Review X 4, 021008. 

15. J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, C. C. McGeoch. 2015. Benchmarking a quantum annealing 
processor with the time-to-target metric. arXiv:1508.05087 

16. D. Korenkevych, Y. Xue, Z. Bian, F. Chudak, W. G. Macready, J. Rolfe, E. Andriyash. 2016. Benchmarking 
quantum hardware for training of fully visible Boltzmann machines. arXiv:1611.04528 

17. T. Lanting et al. 2014. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041. DOI: 
10.1103/PhysRevX.4.021041 

18. A. Lucas. 2014. Ising formulations of many NP problems. Front. Phys. 2 Article 5, 15 pages. 
DOI:10.3389/fphy.2014.00005  

19. V. Martin-Mayor and I. Hen. 2015. Unraveling quantum annealers using classical hardness. Scientific Reports 5, 
15324. 

20. C. C. McGeoch and C. Wang. 2013. Experimental evaluation of an adiabatic quantum system for combinatorial 
optimization, Proceedings of the ACM International Conference on Computing Frontiers, Article No. 23, ACM 
Press. DOI:10.1145/2482767.2482797 

21. C. C. McGeoch. 2014. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice, Morgan 
& Claypool. 

22. F. Neukart, D. Von Dollen, C. Seidel, G. Compostella. 2018. Quantum-enhanced reinforcement learning for 
finite-episode games with discrete state spaces. Front. Phys. 5, Article 71. DOI:10.3389/fphy.2017.00071 

23. Programming with QUBOs. 2016. Release 2.4, D-Wave Systems. 
 Available upon request at inquiry@dwavesys.com. 

24. K. L. Pudenz, T. Albash, D. A. Lidar. 2014. Error-corrected quantum annealing with hundreds of qubits. Nature 
Communications 5, Article No. 3243. 

25. E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, V. N. Smelyanskiy. 2015. A case study in 
programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14, 1-36. 

26. T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, M. Troyer. 
2014. Defining and detecting quantum speedup. Nature 345, 420-424. 

27. G. E. Santoro and E. Tosatti. 2006. Optimization using quantum mechanics: quantum annealing through 
adiabatic evolution. J. Phys. A 39, R393-R431. DOI:10.1088/0305-4470/39/36/R01 

28. P. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum 
computer, SIAM J. Comput. 26, 1484-1509. 

29. S. Suzuki, J. Inoue, B. K. Chakrabarti. 2013. Quantum Ising Phases and Transitions in Transverse Ising Models, 
2nd edition, Springer-Verlag. 

Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018 89

Copyright © 2018 Isaac Scientific Publishing JAAM



30. R. H. Warren. 2013. Adapting the traveling salesman problem to an adiabatic quantum computer, Quantum Inf. 
Process. 12, 1781-1785. DOI:10.1007/s11128-012-0490-8 

31. J. D. Whitfield, M. Faccin, J. D. Biamonte. 2012. Ground-state spin logic. Europhysics Letters 99, 57004. 
 DOI:10.1209/0295-5075/99/57004 

32. T. Albash and D. A. Lidar. 2018. Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002. 
 DOI:10.1103/RevModPhys.90.015002 

90 Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

JAAM Copyright © 2018 Isaac Scientific Publishing




