
Mathematical Methods for a Quantum Annealing Computer

Richard H. Warren

Lockheed Martin Corporation-Retired
Email: rhw3@psu.edu

Abstract. This paper describes the logic and creativity needed in order to have high probability of
solving discrete optimization problems on a quantum annealing computer. Current features of
quantum computing via annealing are discussed. We illustrate the logic at the forefront of this new
era of computing, describe some of the work done in this field, and indicate the distinct mindset that
is used when programming this type of machine. The traveling salesman problem is formulated for
solving on a quantum annealing computer, which illustrates the methods for this computer.

Keywords: Quantum annealing, Ising objective function, Boolean logic, penalty functions, traveling
salesman problem

1 Introduction

Quantum computing has been called an emerging technology that is a paradigm shift from digital
computing. From our viewpoint, it is more than a shift; it is an entirely new way to solve optimization
problems. Old problems are being reformulated so that quantum techniques can be applied with high
probability of finding a global minimum. Hardware is being built that is stable. Operating systems are
being designed that include error correction. Several small quantum computers are available to
researchers.

The design and fabrication of several generations of quantum annealing computers (QACs) to solve
hard optimization problems has aroused interest in their expected speedup [8, 14, 26], real-world
applications [1, 2, 4, 9, 21, 22, 25], and benchmarks [14 - 16]. Current research is focused on framing old
problems to quantum annealing [10, 18, 30], embedding problems into quantum bits and their
connections [5, 13], suppressing errors due to the nature of the apparatus [11, 21, 24], scaling large data
to fit QACs [23], and comparing quantum annealers with thermal annealers [19, 21]. The above list of
topics and [32] indicate that we are working in an interdisciplinary field.

This paper shows the logic for implementing discrete optimization problems on a D-Wave quantum
annealing computer (QAC). Some of these techniques are scattered on three websites [3, 6, 23] and we
develop others. This paper brings together the basic principles for solving discrete optimization problems
on a D-Wave QAC with great likelihood.

D-Wave’s initial processor had 128 quantum bits (called qubits). It has been upgraded and now has
2048 qubits. There are limited connections between qubits. Johnson and his colleagues [12] have an
excellent description and diagram of the physical makeup of a qubit in a D-Wave computer. When super
cooled, a qubit reaches its low energy state. Thus, when a family of qubits is associated with the
variables in an optimization problem, the low energy state of the qubits corresponds to binary values
associated with the variables, thus showing which variables form a minimum for the problem. Globally,
this can be regarded as examining all solutions simultaneously and selecting a near minimum one.
Authors [7, 12, 13, 20] describe D-Wave QACs.

In essence, a QAC does one thing: it finds near optimal answers to discrete minimization problems
extremely fast. In order to do this, it needs an objective function and constraints expressed with binary
variables. This requires declaring the variables, their types, and their coefficients based on the problem.
There are no procedural instructions, such as “if X, then do Y.”

A QAC is not the popularized circuit model on which Shor’s factorization algorithm is designed to
operate [28]. Shor’s algorithm factors products of prime numbers in time growing polynomially in the
size of the integer to be factored.

82
Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

https://dx.doi.org/10.22606/jaam.2018.33002

JAAM Copyright © 2018 Isaac Scientific Publishing

2 Outline and Terminology

Section 3 of this paper contains the unique input function for a QAC, equation (2). In Section 4
elementary Boolean operations are translated into QAC inputs. Penalty functions are introduced in
Section 5. Logic gates are the topic in Section 6. The paper concludes in Section 7 with a formulation of
the traveling salesman problem for quantum annealing.

Figure 1. Terminology and relationships for quantum annealing computers.

3 Ising Model for Quantum Annealing

The theory for quantum annealing [7] implies that the qubits will achieve an optimal state of low energy
when super cooled. This is represented by the following expression where an initial Hamiltonian 0H
evolves to its low energy state in a final Hamiltonian pH according to

 () 01 for 0p
t tH t S H S H t T
T T

    
= − + ≤ ≤         

 (1)

as ()S τ increases from () 0S τ = to ()1 1S = and if 0H and pH do not commute [18]. In theory, T is
the time imposed by the Scrödinger equation for the initial Hamiltonian to evolve to its low energy state
[27]. On a D-Wave QAC, time T is in microseconds. The Hamiltonian 0H is established by D-Wave
for all problems. The Hamiltonian pH represents the combinatorial problem to be solved and is an input
to a QAC. Determining pH is a subject of this paper. Besides pH , other inputs include the number of
samples of the problem, the time T within a given range, and scaling factors. Essentially, a result

()H t is a sample from a Boltzmann distribution.
A physical implementation of (1) does not strictly meet the conditions for quantum annealing. In

addition, values loaded by the user may differ slightly from the machine interpretation of the numbers.
These difficulties are overcome by making multiple samples and choosing a valid solution that has
minimum energy.

The Ising objective function [13, 17, 23, 29] for the optimal state pH in (1) is

min ?i ij j i i
i j i

s J s h s
>

 
+  

 
∑ ∑ (2)

where i and j are qubits and si is the final spin state of qubit i. Also hi is the energy strength for qubit i
and Jij is the coupling energy between qubits i and j. The problem to be minimized dictates the values
for the coefficients hi and Jij. An optimal state for (2) is an assignment of ±1 to the spin states si and sj

Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018 83

Copyright © 2018 Isaac Scientific Publishing JAAM

by the QAC so that (2) is minimized.
The interface between the variables and the qubits in a QAC is the Hamiltonian Hp, which is a square,

symmetric matrix with a row and column for each spin variable 𝑠𝑖 that applies to the problem. The
entries in Hp originate in the minimization problem. The diagonal entries of Hp are the energy strengths
hi assigned to qubits. The off-diagonal entries are the coupling energies Jij assigned to the connections
between qubits. The entries in Hp are adjusted for penalty functions that will be described in Section 5.

In summary, (2) is the unique format for a discrete optimization problem to be processed on a QAC.
The variables hi and Jij in (2) are from the problem and are inputs to a QAC.

4 Boolean Applications

Let i and j designate qubits in a QAC. We will use a transcribed model where { }0,, 1i jx x ∈ . This is
convenient for Boolean algebra. If { }1, 1is ∈ − and { }0, 1ix ∈ , the relationship 2 1i is x= − equates the

spin state model (2) and a Boolean model. So we may replace is and js in (2) with ix and jx , and
assume that the values 0, 1 are assigned to the qubits in the minimization process. Next we will show
how to set some Boolean operations so they fit (2) and can be used on a QAC.

Suppose we want to set the state ix of qubit i to be a constant 0 or 1. Let hi be the local field at i

where iih x is a term in (2). If we set hi sufficiently less than 0, then ix will be minimized to 1 in the
annealing process represented by (2). Or if we set hi sufficiently greater than 0, then ix will be
minimized to 0.

Suppose we want to set k ix x= which represents the Boolean states of qubits k and i being identical,
i.e., we want two physical qubits, each with 5 connections to other qubits, to form a logical qubit with 8
connections to other qubits 1 . The equation k ix x= does not conform to (2). So we look for a

relationship between kx and ix that have the same value, say v , when k ix x= and at least 1v +
when k ix x≠ . This is represented by the catalog

kx ix Value
1 1 v
1 0 at least 1v +
0 1 at least 1v +
0 0 v

From (2) there are three variables that can be used: ih , kh and ikJ . A solution is 2 i k i kx x x x− + +

which minimizes at 0v = if and only if k ix x= . Thus 1ih = , 1kh = and 2ikJ =− . This is the first
entry in Table 2.

Table 1. Truth tables for basic Boolean operations on two binary variables

 Conjunction (And) Disjunction (Inclusive Or) Implication Exclusive Or Equivalence

ix jx i jx x∧ i jx x∨ i jx x→ i jx x⊕ i jx x≡

1 1 1 1 1 0 1
1 0 0 1 0 1 0
0 1 0 1 1 1 0
0 0 0 0 1 0 1

1 Physical connectivity between qubits is limited. The connections between 8 qubits in a unit in a D-Wave QAC
form a complete bipartite graph on 4 vertices 4,4K [13 Figure 1, 14 Figure 1]. In addition, each qubit connects to
one qubit in an adjacent unit. The 1152 qubit chip is composed of a two dimensional array of 12 × 12 units, each
containing 8 qubits.

84 Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

JAAM Copyright © 2018 Isaac Scientific Publishing

Let kx be the negation of kx where 0kx = if 1kx = and 1kx = if 0kx = . The quantum annealing
adjustments for this operation are in Table 2.

Table 1 contains the truth tables for the Boolean operations addressed in Table 2.

Table 2. Expressions for Boolean logic

Boolean Logic Corresponding Equation(s) Corresponding Penalty Function

k i

k

k i

k

j

i

i

j

x x

x
x x x

xx x

x=

= ∧

= ∨

=

1

k i

k i

k i j

jijik

x
x

x x
x x
x x

x xx x

= −

=

= + −

=

 ()
() ()

2
2

2 + 3

1 2 1

i k i k

i k i k

i j i j k k

i j i j k

x x x x
x x x x

x x x x x x

x x x x x

− + +

− −

− +

+ + − +

()k i jx x x= → 1k i j i i jx x x x x x= ∨ = − + ()4 2 6 2 9i j i k i j a k a i k ax x x x x x x x x x x x+ − + − − − +

k i jx x x= ⊕ () ()

()
()

 = 2

 = 2

 = 2

j i j

j j

k i

i i

i

i

j

j

x x x

x x

x mo

x x

x x

x

x

d

x mod

= ∨ ∧ ∨

+ −

+

−

() ()2 2 4

4 4
There is no quadratic penalty function using
only variables , and .

i j i j k i j a

k a i j k a

i j k

x x x x x x x x

x x x x x x

x x x

− + − + +

+ + + +

()k i jx x x= ≡ () 1 2k i j i j i jx x x x x x x= ⊕ = − − + () ()2 2 4

4 8
i j i j k i j a

k a i j k a

x x x x x x x x

x x x x x x

+ + − + −

− − − +

In Table 2 expressions for Boolean logic are translated to penalty functions that can be implemented

on a QAC. The notation a represents an ancillary qubit so that a i jx x x= and is introduced to reduce
a product of three variables to a quadratic term. This is necessary because the Ising objective function
(2) is quadratic.

The penalty functions for ,∧ ∨ and ⊕ are from [23 Table 4.1]. The penalty function for ≡ is the
negation of the penalty function for ⊕ added to 4 times the penalty function for ∧ . Similarly, the
penalty function for → is a sum of two penalty functions. The first is derived from the algebraic
equation for →. The other is 3 times the penalty function for ∧ .

5 Penalty Functions

Equations, inequalities and expressions of Boolean logic cannot be entered directly in (2) for computing.
Instead, penalty functions are used to represent them. We will explain how to convert to penalty
functions.

Table 2 shows a conversion of expressions for Boolean logic to penalty functions. To verify that a
penalty function represents its Boolean logic, it is necessary to show that the penalty function yields the
same value, say v, for each assignment of truth values to the expression of the Boolean logic, and that
the penalty function yields at least v + 1 for each assignment of false values to the expression of the
Boolean logic. The latter is needed because (2) is a minimization statement.

A constraint that is an equation can be changed to a penalty function by noting that a parable which
opens upward has a minimum value at its vertex. We convert an equation to a generalized parable by
reversing the algebraic sign of all terms on one side of the equation and deleting the equality sign. Next,
we square the result, simplify it with the property 2x x= for binary variables 0 and 1, and delete the
constant term so that the minimum value is 0. (A minimum value of 0 does not change when the
penalty function is multiplied by a positive scalar.) It is easily seen that a binary solution occurs for the

Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018 85

Copyright © 2018 Isaac Scientific Publishing JAAM

constraint equation if and only if its penalty function attains a global minimum at this solution. We
illustrate this general method for the equation k ix x= from Section 4.

Step 1. Reverse the algebraic sign of the term on the left side of the equation and delete the equality
sign: k ix x− + .

Step 2. Square the result: ()2 2 2 2k i i k i kx x x x x x= −− +++ .
Step 3. Simplify by the property 2x x= for binary variables 0 and 1: 2 i k i kx x x x+− + which is the
result in Table 2.
Step 4. Delete the constant term. This step is not needed for this example.
A constraint inequality can be converted to a constraint equation by inserting slack variables, as is

done in the simplex algorithm for linear programming.
See [23 Section 4.1.3] for a systematic method to construct constraint equations and constraint

inequalities for a specific problem. It also has techniques to derive penalty functions.
The largest degree of the terms in (2) is 2. If a term in a penalty function has degree greater than 2,

the degree can be reduced by introducing an ancillary qubit that represents the product of two variables.
There are pitfalls, such as an ancillary qubit substituted in a quadratic term may destroy the logic of
the penalty function. The penalty functions for Boolean operations ,→ ⊕ and ≡ in Table 2 require an
ancillary qubit. These penalty functions were tested for false values of the dependent variables kx and

ax occurring simultaneously, in addition to testing them separately.

6 Logic Gates

A logic gate is a device, ideal or real, that implements a Boolean operation [5, 31]. Logic gates are
usually separate steps in the popularized circuit model of quantum computing. However, in quantum
annealing, according to (2) there are no separate steps. This implies that a logic gate in quantum
annealing needs to be part of the single input. As result, logic gates do not seem to appear in quantum
annealing unless they are an intrinsic part of the minimization problem. We will discuss a gate for one
of the five basic Boolean operations in Table 1, Exclusive Or.

The controlled-NOT gate (also called the CNOT gate or XOR gate) in a circuit model quantum
computer negates the target bit if and only if the control bit is 1. The truth table for the CNOT gate is:

Input Output
Control Target Control Target

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

The CNOT gate is fundamentally important in a circuit model quantum computer, because all gates can
be generated by one-bit gates and the CNOT gate [28 page 1489].

The truth table for Exclusive Or in Table 1 is identical to the truth table for the CNOT gate.
Therefore, a natural way to implement a CNOT gate for a QAC is to use Exclusive Or. Thus, a CNOT
gate in quantum annealing needs to act like the penalty function for ⊕ in Table 2.

The CNOT gate in the circuit model is composed of two qubits, a target and a control. According to
Table 2, since the CNOT gate equates to ⊕ , the CNOT gate in a QAC uses four qubits. They are
target 𝑖, control 𝑗, result 𝑘 and ancillary 𝑎. We will form a Hamiltonian for a CNOT gate using these
four qubits. Let 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 and 𝑥𝑎 be their corresponding value in {0, 1}. From Table 2 the penalty
function for the CNOT gate is
 () ()2 4 42 4i j i j k i j a k a i j k ax x x x x x x x x x x x x x+ − + + ++ + +− (3)

In (3), a i jx x x= and is used to reduce i j kx x x to a quadratic term which is required by (2). The
coefficients of the linear terms in (3) are placed on the diagonal of the Hamiltonian and the coefficients
of the quadratic terms are placed off the diagonal. Based on (3), the Hamiltonian for the CNOT gate is:

86 Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

JAAM Copyright © 2018 Isaac Scientific Publishing

 i j k a
i 1 2 -2 -4
j 2 1 -2 -4
k -2 -2 1 4
a -4 -4 4 4

A QAC assigns values to , ,i kjx x x and ax from {0, 1} so that (3) is minimized.
A CNOT gate is reversible in quantum computing. After the gate is executed, if the control is applied

to the result, then the original target is recovered.
In summary, in quantum annealing a logic gate may be regarded as a Hamiltonian that implements

its corresponding Boolean operation. This Hamiltonian is combined with a Hamiltonian that represents
an optimization problem for a single input to a QAC.

7 The Traveling Salesman Problem

To illustrate the logic in this paper, the traveling salesman problem (TSP) is formulated for
implementation on a QAC. This is an improvement and expansion of the presentations in [30] by
incorporating the redundancy of one city. Given a set of cities and the directed distances between each
pair of cities, the task of the TSP is to find a shortest route that visits each city exactly once and
returns to the starting city.

Let the cities be designated 1, 2, …,n. Let ijd be the distance from city 𝑖 to city j . We do not assume
that jij id d= . A tour is a cyclic permutation of the cities, i.e., a permutation that has one cycle. The
TSP asks for a tour of the cities that returns to the starting city and minimizes the distance traveled,
called an optimal tour. As in [30], our binary variables for the TSP are itV representing city i occurring
in position t of a tour. For an n-city problem, the indices satisfy 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑡 ≤ 𝑛. We want
city 1 to be in the first position of all tours. This is accomplished by setting 11 1V = and not using 1iV
for 2 ≤ 𝑖 ≤ n.

A subtour is a cyclic permutation of a proper subset of the cities. Subtours must be prevented from
spoiling the selection of an optimal tour. Both [18, 30] do this in the objective function by having the
subscripts on the binary variables represent the position of a city in a tour. Moreover, the distance from
city i to city j counts toward the optimal tour length only when cities i and j are consecutive in the tour
and city i precedes city j. A bonus of this formulation is that both symmetric and asymmetric TSPs can
be represented.

Employing the pattern of (2), our objective function for the TSP is

 1 11 2

1

, 1 1 11 11
2 2, 22

;and 1
n n n

ij it j t i in
t ii j

j
j

j

j

i

n

d V V d V V d V V V
−

=
+

= ==
≠

+ =+ ∑ ∑∑∑

This is equivalent to

1

1 , 1 1
2 , 2 2 2

2

n n n n

j ij j t i
j i j t i

j n

i

it i

j

E d V d V V d V
−

+
= = = =

≠

+ += ∑ ∑∑ ∑ (4)

We want the D-Wave processor to assign 0, 1 to the binary variables itV so that (4) is minimized and
the variables are subject to the following constraints.

 }{
2

For each 2,3,..., 1
n

it
i

t n V
=

∈ =∑ (5)

 }{
2

For each 2,3,..., 1
n

it
t

i n V
=

∈ =∑ (6)

Constraint (5) ensures that each position 2t ≥ has exactly one city in an outcome. Constraint (6)
ensures that each city 2i ≥ occurs exactly once in an outcome. The notation in (4) ensures that

Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018 87

Copyright © 2018 Isaac Scientific Publishing JAAM

subloops do not occur.
Constraints (5) and (6) need to be modified so they conform to (2). Using the steps in Section 5, the

result for constraint (5) is

 { }
1

2 2 1

 for 2,3,...2 .,
n n n

t it jt kt
i j k j

F V V t nV
−

= = = +

= − + ∈∑ ∑∑ (7)

We note that tF attains its minimum when 1itV = for exactly one subscript i and 0itV = for all
subscripts j i≠ . Thus, tF attains its minimum when constraint (5) is true.

Similarly, constraint (6) can be implemented in the form of (2) by

 { }
1

2 2 1

 for 2,3,...2 .,
n n n

i it ir is
t r s r

G V V i nV
−

= = = +

= − + ∈∑ ∑∑ (8)

The input to the D-Wave quantum computer is

 1 2
2 2

* * .
n n

t i
t i

E F Gλ λ
= =

 
+ +  

 
∑ ∑ (9)

The iλ are Lagrange multipliers to scale the pieces of the input in order to control errors and improve
precision.

The TSP as formulated in (4) – (6) has been verified on a D-Wave QAC for n = 6, 7, and 8, 1 1λ = ,

2λ =1500 and distances between real cities ranging from 302 to 2230. When n = 9, the embedding
requires more than 1200 qubits. The D-Wave software “dw” was used. It has the advantage of finding
an embedding of the variables into the qubits, avoiding the Hamiltonian matrix which is tedious to
construct, and determining whether solutions satisfy assertions that describe the constraints.

However, the D-Wave processor and the “dw” software have difficulties. They sample from 1000
solutions in order to have a high probability of finding a valid solution. However, sometimes all 1000
solutions of a TSP are invalid. Also, the documentation about scaling factors seems sketchy and
incomplete. We set the parameters by experimenting without fully knowing what was being affected.

8 Conclusion

We have shown that computation on a quantum annealing computer has rich mathematical methods
which are different than those for digital computing. The major source of the difference is the single
input statement (2) for computing on a quantum annealer.

Acknowledgments. Several colleagues are thanked for comments and suggestions that significantly
improved previous versions of the manuscript. Denny Dahl and Joel Gottlieb of D-Wave Systems are
thanked for helping to install the TSP on a D-Wave quantum annealing computer. The Lord Jesus is
thanked for providing motivation and financial resources to investigate these topics and write this paper.

References

1. S. H. Adachi and M. P. Henderson. 2015. Application of quantum annealing to training of deep neural networks.
arXiv:1510.06356, 18 pages.

2. M. Benedetti, J. Realpe-Gomez, R. Biswas, and A. Perdomo-Ortiz. 2016. Estimation of effective temperatures in
quantum annealers for sampling applications: A case study with possible applications in deep learning. Phys. Rev.
A 94, 022308.

3. Z. Bian, F. Chudak, W. G. Macready, G. Rose. 2010. The Ising model: teaching an old problem new tricks. D-
Wave Systems. http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf

4. Z. Bian, F. Chudak, W. G. Macready, L. Clark, F. Gaitan. 2013. Experimental determination of Ramsey
numbers. Phys. Rev. Lett. 111, 130505.

5. Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, A. Roy. 2014. Discrete optimization using quantum
annealing on sparse Ising models. Front. Phys. 2 Article 56.

88 Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

JAAM Copyright © 2018 Isaac Scientific Publishing

6. E. Boros and P. L. Hammer. 2001. Pseudo-Boolean Optimization.
http://rutcor.rutgers.edu/~boros/Papers/2002-DAM-BH.pdf

7. S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, M. Troyer. 2014.
Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10, 218-224. DOI:
10.1038/nphys2900

8. S. Boixo, G. Ortiz, R. Somma. 2015. Fast quantum methods for optimization. Eur. Phys. J. Special Topics 224,
35-49.

9. M. Henderson, J. Novak, T. Cook. 2018. Leveraging adiabatic quantum computation for election forecasting.
arXiv:1802.00069

10. V. Horan, S. Adachi, S. Bak. 2016. A comparison of approaches for finding minimum identifying codes on
graphs. Quantum Inf. Process. 15, 1827-1848.

11. Z. Jiang and E. G. Rieffel. 2017. Non-commuting two-local Hamiltonians for quantum error suppression.
Quantum Inf. Process. 16, Article 89. https://doi.org/10.1007/s11128-017-1527-9

12. M. W. Johnson et al. 2011. Quantum annealing with manufactured spins. Nature 473, 194-198.
DOI: 10.1038/nature10012

13. K. Karimi, N. G. Dickson, F. Hamze, M. H. S. Amin, M. Drew-Brook, F. A. Chudak, P. I. Bunyk, W. G.
Macready, G. Rose. 2012. Investigating the performance of an adiabatic quantum optimization processor.
Quantum Inf. Process. 11, 77-88.

14. H. G. Katzgraber, F. Hamze, R. S. Andrist. 2014. Glassy chimeras could be blind to quantum speedup:
Designing better benchmarks for quantum annealing machines. Phys. Review X 4, 021008.

15. J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, C. C. McGeoch. 2015. Benchmarking a quantum annealing
processor with the time-to-target metric. arXiv:1508.05087

16. D. Korenkevych, Y. Xue, Z. Bian, F. Chudak, W. G. Macready, J. Rolfe, E. Andriyash. 2016. Benchmarking
quantum hardware for training of fully visible Boltzmann machines. arXiv:1611.04528

17. T. Lanting et al. 2014. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041. DOI:
10.1103/PhysRevX.4.021041

18. A. Lucas. 2014. Ising formulations of many NP problems. Front. Phys. 2 Article 5, 15 pages.
DOI:10.3389/fphy.2014.00005

19. V. Martin-Mayor and I. Hen. 2015. Unraveling quantum annealers using classical hardness. Scientific Reports 5,
15324.

20. C. C. McGeoch and C. Wang. 2013. Experimental evaluation of an adiabatic quantum system for combinatorial
optimization, Proceedings of the ACM International Conference on Computing Frontiers, Article No. 23, ACM
Press. DOI:10.1145/2482767.2482797

21. C. C. McGeoch. 2014. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice, Morgan
& Claypool.

22. F. Neukart, D. Von Dollen, C. Seidel, G. Compostella. 2018. Quantum-enhanced reinforcement learning for
finite-episode games with discrete state spaces. Front. Phys. 5, Article 71. DOI:10.3389/fphy.2017.00071

23. Programming with QUBOs. 2016. Release 2.4, D-Wave Systems.
 Available upon request at inquiry@dwavesys.com.

24. K. L. Pudenz, T. Albash, D. A. Lidar. 2014. Error-corrected quantum annealing with hundreds of qubits. Nature
Communications 5, Article No. 3243.

25. E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, V. N. Smelyanskiy. 2015. A case study in
programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14, 1-36.

26. T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, M. Troyer.
2014. Defining and detecting quantum speedup. Nature 345, 420-424.

27. G. E. Santoro and E. Tosatti. 2006. Optimization using quantum mechanics: quantum annealing through
adiabatic evolution. J. Phys. A 39, R393-R431. DOI:10.1088/0305-4470/39/36/R01

28. P. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26, 1484-1509.

29. S. Suzuki, J. Inoue, B. K. Chakrabarti. 2013. Quantum Ising Phases and Transitions in Transverse Ising Models,
2nd edition, Springer-Verlag.

Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018 89

Copyright © 2018 Isaac Scientific Publishing JAAM

30. R. H. Warren. 2013. Adapting the traveling salesman problem to an adiabatic quantum computer, Quantum Inf.
Process. 12, 1781-1785. DOI:10.1007/s11128-012-0490-8

31. J. D. Whitfield, M. Faccin, J. D. Biamonte. 2012. Ground-state spin logic. Europhysics Letters 99, 57004.
 DOI:10.1209/0295-5075/99/57004

32. T. Albash and D. A. Lidar. 2018. Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002.
 DOI:10.1103/RevModPhys.90.015002

90 Journal of Advances in Applied Mathematics, Vol. 3, No. 3, July 2018

JAAM Copyright © 2018 Isaac Scientific Publishing

