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Abstract. Tensor is a high-level extension of the matrix, H-tensor is a special tensor and it is a new 
developed concept in tensor analysis. In this paper, we introduce some definitions and theorems firstly, 
then establish some implementable criteria in identifying nonsingular H-tensor, and at last give two 
numerical examples to prove the criteria are reliable. 
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1   Introduction 

Tensor analysis and computing has received much attention of researchers in recent decade since tensors 
have wide applications in signal and image processing, continuum physics, higher-order statistics [1].  

Generally, tensor is a higher-order extension of matrix. A high order tensor is a multi-way array whose 
entries are addressed via multiple indices in the following form: 

1 2
( ), 1,2, , , 1,2, , ,

mi i i j ja i n j mΑ = = =    

where 
1 2 mi i ia   are real numbers. If 1 2 mn n n n= = = = , then Α  is called a square tensor, otherwise it 

is called a rectangular tensor. 
For tensor A and matrix X, their product on mode-k [1] is defined as 
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For tensor A and vector nx R∈ , m-1XΑ  is a vector in nR  with entries 
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and mXΑ  is a scalar with 
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The paper uses I to denote m-th order n-dimensional identity tensor with entries 
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and define the following notation 

1

11 = =
0 .m

m
i i

i i
otherwise

δ
= 




 ，
 

In paper [2] and [4], the authors gave some properties and applications of M-tensors. In paper [3], the 
authors gave some properties of H-tensors. H-tensor plays an important role in identifying positive 
definiteness of even-order real symmetric tensors and it contains M-tensor as special cases.  This paper 

This work is supported by the National Natural Science Foundation of China(61472196,61672305,11771188). 
*Corresponding author: fywmh@163.com 

66
Journal of Advances in Applied Mathematics, Vol. 3, No.2, April 2018 

https://dx.doi.org/10.22606/jaam.2018.32004

JAAM Copyright © 2018 Isaac Scientific Publishing



establishes some new implementable criteria in identifying nonsingular H-tensors and gives two numerical 
examples. 

2   H-tensors and Their Properties 

The paper first presents some definitions developed in tensor analysis and then introduces some kinds of 
specially structured tensors. For a real m-order n-dimensional tensor Α  and a scalar Cλ ∈ , if there 
exists nonzero vector nX C∈  such that 

11 .mmX Xλ  −−  Α =  
where 1m nX C −  ∈  with 1 1, 1,2, .m m

i iX X i n − −  ∈ = （ ）  then λ  is said to be an eigenvalue of tensor Α  
and X  an eigenvector associated with eigenvalue λ . In particular, if X  is real, then λ  is also real, 
and ( ; )Xλ  is said to be an H-eigenpair of tensor Α . The largest modulus of eigenvalue of tensor Α  is 
called the spectral radius of tensor Α  and denotes it by ( )( Α . Motivated by the characteristics of 
nonsingular matrices and say a square tensor is nonsingular if its all eigenvalues are nonzero. 
Definition 2.1[2] Tensor Α  is said to be a Z-tensor if it can be written as cIΑ = − Β , where 0c >  
and Β  is a nonnegative tensor. Furthermore, if ( )c (≥ Β , then Α  is said to be an M-tensor, and if 

( )c (> Β , and then Α  is said to be a nonsingular M-tensor. It is easy to see that all the off diagonal 
entries of a Z-tensor are non-positive. 
Proposition 2.1[2] Let Α  be a Z-tensor. Then it is a nonsingular M-tensor if and only if one of the 
following conditions holds. 
(1) The real part of any eigenvalue of tensor Α  is positive; 
(2) There exists positive vector nX R∈  such that 1 0mX −Α > . 
Definition 2.2[2] For m-order n-dimensional tensor Α , its comparison tensor denoted by MΑ , is defined 
as 
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Definition 2.3[2] If comparison tensor MΑ  of tensor Α  is an M-tensor, then tensor Α  is called an 
H-tensor, and if comparison tensor MΑ  is a nonsingular M-tensor, then tensor Α  is called a nonsingular 
H-tensor. 
Definition 2.4[3] Tensor Α  is called diagonally dominant if 
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2

, 1,2, , ,
m

m

ii i ii i i
i i ii i

a a i n
≠

≥ ∀ =∑ 
 

   (2.1) 

and tensor Α  is called strictly diagonally dominant if all the inequalities hold with strict inequality. 
Theorem 2.1[3] If square tensor Α  is strictly diagonally dominant or it is irreducible and diagonally 
dominant with at least one strict inequality holding in (2.1), then it is a nonsingular H-tensor. 
Definition 2.5[4] Tensor Α  is said to be generalized strictly diagonally dominant if there exists positive 
diagonal matrixD such that 1mD −Α  is strictly diagonally dominant. 
Proposition 2.2[2] Tensor Α  is a nonsingular H-tensor if and only if Α  is generalized strictly 
diagonally dominant.  
Corollary 2.1[2] For square tensor Α , if there exists a positively diagonal matrix n nD R ×∈  such that 

1mD −Α  is a nonsingular H-tensor, then Α  is a nonsingular H-tensor. 
Proposition 2.3[2] If tensor Α  is irreducible and diagonally dominant with at least one strict inequality 
holding in (2.1), then it is generalized diagonally dominant. 

3   Criteria for Nonsingular H-tensors 

Now, the study turns to considering one kind of tensor diagonal product dominance. Let S  be a subset of 
N  and \S N S= . Then the following multiple index is defined 
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Based on the above sets denote that 
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Then the paper can have the following conclusion. 
Theorem 3.1 For tensor 

1 2
( ),

mi i iaΑ =   if there exists a partition ( , )S S  of the index set N  such that 
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and if 10,
2

α
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, then Α  is a nonsingular H-tensor. 
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From the first inequality of (3.1), one has 
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Hence the paper defines the following positive diagonal matrix D  with diagonal entries 
1 ,

.ii
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where 1d >  is such that 

1 1
( ) ( )

, ; , .
( ) ( )

pp p p qm m

p qq q q

a R R
d p S d q S

R a R

Λ Λ
− −

Λ Λ

− Α Α
> ∈ > ∈

Α − Α





 

Now, consider tensor 1mD −Β = Α . It is easy to see that for any i N∈ , 
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Thus for p S∈ , if ( ) 0pRΛ Α > , then 
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and if ( ) 0pRΛ Α = , then from the first inequality of (3.1), 
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For q S∈ , from the second inequality of (3.1), one has 
1 1 1

1

( ) ( ) ( ) ( ) ( )

( ( )) ( )

( )
( ( )) ( ) 0.

( )

m m m
qq q q qq q q q qq q q q

m
qq q q q

q
qq q q q

qq q q

b R d a R R d a R d R

d a R R

R
a R R

a R

− Λ Λ − Λ − Λ

− Λ Λ

Λ
Λ Λ

Λ

− Β = − Β − Β ≥ − Α − Α

= − Α − Α

Α
> − Α − Α =

− Α

  







 

This means that tensor 1mD −Α  is strictly diagonally dominant, and Α  is generalized strictly 
diagonally dominant, hence it is a nonsingular H-tensor by Proposition 2.2. 
Theorem 3.2 For irreducible tensor 
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Hence it defines the following positive diagonal matrix D  with diagonal entries 
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where 1d >  is such that 
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Now, consider tensor 1mD −Β = Α . The Β  remains irreducible as D  is positively diagonal. It is easy to 
see that for any i N∈ , 
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For q S∈ , from the second inequality of (3.2), one has 
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Thus, 1mD −Α  is diagonally dominant with at least one strict inequality. Since 1mD −Α  is irreducible, 
and also knows that 1mD −Α  is generalized diagonally dominant by Proposition 2.3. So Α  is generalized 
diagonally dominant and it is a nonsingular H-tensor.  

4   Examples 

Example 1 Consider 4 order 4 dimensional tensor Α  with entries 

1111 2222 3333 4444 1222 2111 4111 4222 2444
1 42, , 1, .
3 3

a a a a a a a a a= = = = = = = = =  

and all other entries are zeros and { }1,3S = , { }2,4S = , 1p = , 2q = , 1
3

α = . 
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From Theorem 3.1, it concludes that tensor Α  is a nonsingular H-tensor. 
Example 2 Consider 4 order 4 dimensional tensor Α  with entries 

1111 2222 3333 4444 1222 2111 2444 4111 4222
14, , 1,
4

a a a a a a a a a= = = = = = = = =  
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then 
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1 1( ( )) ( ( )) ( ) ( ( )) .pp p p qq q q p qa R a R R Rα α α αΛ Λ − Λ Λ −− Α − Α > Α Α   
From Theorem 3.1, the paper concludes that tensor A is a nonsingular H-tensor. 
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