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Abstract S-metric spaces are introduced as a generalization of metric spaces. In this paper, we
present some common fixed point theorems about four mappings using the notion of compatible
mappings on complete S-metric spaces. We give illustrative examples to verify the obtained result.
The results not only directly improve and generalize some fixed point results in S-metric spaces,
but also expand and complement some previous results.
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1 Introduction and Preliminaries

Banach’s contraction mapping principle in metric spaces is the most well-known result in the theory of
fixed points. When the fixed point theorem was proved by Banach[1] in 1922 for a contraction mapping
in a complete metric space, scientists around the world are publishing new results that are connected
either to establish a generalization of metric space or to get an improvement of contractive condition.
In addition, with the improvement of Banach’s contractive conditions, metric spaces are more and more
important in mathematics and applied sciences. So, some authors have tried to give generalizations of
metric spaces in other spaces, such as 2-metric spaces, cone metric spaces, b-metric spaces, G-metric
spaces,D-metric spaces and others[2]-[4]. One of the generalizations of metric spaces is given in the paper
of Sedghi et al. [5]. They introduced a notion of S-metric spaces and gave some of their properties. For
more details on S-metric spaces, one can refer to the paper[7]-[16].

The object of this paper is to get some common fixed point results in the complete S-metric spaces,
which were inspired by [14] and [15].

First,The notion of S-metric spaces is defined as follows.

Definition 1.1. (See [5]) Let X be a nonempty set. A function S : X3 → [0, ∞) is said to be an S-metric
on X, if for each x, y, z, a ∈ X:

(S1) S(x, y, z) ≥ 0;
(S2) S(x, y, z) = 0 if and only if x = y = z;
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X, S) is called an S-metric space.

Example 1.2. (See [5]) Let X = R2 and d be an ordinary metric on X. Put S(x, y, z) = d(x, y) +
d(x, z) + d(y, z) for all x, y, z ∈ R2, that is, S is the perimeter of the triangle given by x, y, z. Then S is
an S-metric on X.

Definition 1.3. (See [6]) Let X be a nonempty set. A B-metric on X is a function d : X2 → [0, ∞) if
there exists a real number b ≥ 1 such that the following conditions hold for all x, y, z ∈ X:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(B3) d(x, z) ≤ b[d(x, y) + d(y, z)].

The pair (X, d) is called a B-metric space.
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Proposition 1.4. (See [7]) Let (X, S) be an S-metric space and let

d(x, y) = S(x, x, y) (1)

for all x, y ∈ X. Then we have

(1) d is a B-metric on X;
(2) xn → x in (X, S) if and only if xn → x in (X, d);
(3) {xn} is a Cauchy sequence in (X, S) if and only if {xn} is a Cauchy sequence in (X, d).

Proposition 1.5. (See [7]) Let (X, S) be an S-metric space. Then we have

(1) X is first-countable;
(2) X is regular.

Remark 1.6. By Propositions 1.4 and 1.5 we have that every S-metric space is topologically equivalent
to a B-metric space.

Lemma 1.7. (See [5]) Let (X, S) be an S-metric space. Then the convergent sequence {xn} in X is
Cauchy.

Definition 1.8. (See [8]) Let (X, S) be an S-metric space and A ⊆ X.

(1) If for every x ∈ X there exists r > 0 such that Bs(x, r) ⊆ A, then the subset A is called an open
subset of X.

(2) Subset A of X is said to be S-bounded if there exists r > 0 such that S(x, x, y) < r for all x, y ∈ A.
(3) A sequence {xn} in X convergent to x if and only if S(xn, xn, x) → 0 as n → ∞. That is, for

each ε > 0, there exists n0 ∈ N such that for each n ≥ n0, S(xn, xn, x) < ε and we denote by
limn→∞ xn = x.

(4) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there exists n0 ∈ N such that
for each n, m ≥ 0, S(xn, xn, xm) < ε.

(5) The S-metric space (X, S) is said to be complete if every Cauchy sequence is convergent.
(6) Let τ be the set of all A ⊆ X witch x ∈ A if and only if there exists r > 0 such that Bs(x, r) ⊆ A.

Then τ is a topology on x.

Lemma 1.9. (See [8]) Let (X, S) be an S-metric space. If there exist the sequences {xn}, {yn} such
that limn→∞ xn = x and limn→∞ yn = y, then limn→∞ S(xn, xn, yn) = S(x, x, y).

Lemma 1.10. (See [9]) Let (X, S) be an S-metric space. Then S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z) and
S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y) for all x, y, z ∈ X. Also, S(x, x, y) = S(y, y, x) for all x, y ∈ X by
[10].

Definition 1.11. (See [14]) Let (X, S) and (X ′
, S

′) be two S-metric spaces. A function f : (X, S) →
(X ′

, S
′) is said to be continuous at a point a ∈ X if for every sequence {xn} in X with S(xn, xn, a) → 0,

S
′(f(xn), f(xn), f(a)) → 0. We say that f is continuous on X if f is continuous at every point a ∈ X.

Definition 1.12. (See [15]) Let (X, S) be an S-metric space. A pair (f, g) is said to be compatible if and
only if limn→∞ S(fgxn, fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limn→∞ fxn =
limn→∞ gxn = t for some t ∈ X.

Lemma 1.13. (See [15]) Let (X, S) be an S-metric space. If there exists two sequences xn and yn such
that limn→∞ S(xn, xn, yn) = 0, whenever xn is a sequence in X such that limn→∞ xn = t for some t ∈ X;
then limn→∞ yn = t.
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2 Main Results

In this section, we have proved some common fixed point theorems in S- metric spaces. Let Φ denote
the class of all functions ϕ : R+ → R+ such that ϕ is nondecreasing, continuous and

∞∑
n=1

ϕn(t) < ∞ for

all t > 0. It is clear that ϕn(t) → 0 as n → ∞ for all t > 0 and hence, we have ϕ(t) < t for all t > 0.

Theorem 2.1. Let (X, S) be a complete S-metric space and let A, B, U, T : X → X be mappings
satisfying the following conditions:

(i) A(X) ⊆ U(X), B(X) ⊆ T (X);
(ii) U and T are continuous;
(iii) the pair (A, T ) and (B, U) are compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 such that

S(Ax, Ay, Bz) ≤ ϕ(max{S(Tx, Ty, Uz), k1S(Ax, Ax, Tx),
k2S(Bz, Bz, Uz), k3S(Ay, Ay, Bz)}). (2)

Then the maps A, B, U and T have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary point of X. From condition (i) we can construct a sequence {yn} in X
as follows:

y2n = Ax2n = Ux2n+1, y2n+1 = Bx2n+1 = Tx2n+2, n ≥ 0.

Now, we show that {yn} is a Cauchy sequence. Let dn+1 = S(yn, yn, yn+1). Then we have

d2n+1 = S(y2n, y2n, y2n+1)
= S(Ax2n, Ax2n, Bx2n+1)
≤ ϕ(max{S(Tx2n, Tx2n, Ux2n+1), k1S(Ax2n, Ax2n, Tx2n),

k2S(Bx2n+1, Bx2n+1, Ux2n+1), k3S(Ax2n, Ax2n, Bx2n+1)})
= ϕ(max{S(y2n−1, y2n−1, y2n), k1S(y2n, y2n, y2n−1),

k2S(y2n+1, y2n+1, y2n), k3S(y2n, y2n, y2n+1)})
= ϕ(max{d2n, k1d2n, k2d2n+1, k3d2n+1}).

Thus d2n+1 ≤ ϕ(d2n). By similar arguments we have,

d2n = S(y2n−1, y2n−1, y2n)
= S(y2n, y2n, y2n−1)
= S(Ax2n, Ax2n, Bx2n−1)
≤ ϕ(max{S(Tx2n, Tx2n, Ux2n−1), k1S(Ax2n, Ax2n, Tx2n),

k2S(Bx2n−1, Bx2n−1, Ux2n−1), k3S(Ax2n, Ax2n, Bx2n−1)})
= ϕ(max{S(y2n−1, y2n−1, y2n−2), k1S(y2n, y2n, y2n−1),

k2S(y2n−1, y2n−1, y2n−2), k3S(y2n, y2n, y2n−1)})
= ϕ(max{d2n−1, k1d2n, k2d2n−1, k3d2n}).

Thus d2n ≤ ϕ(d2n−1). Hence, for all n ≥ 2, we have,

S(yn, yn, yn+1) ≤ ϕ(S(yn−1, yn−1, yn))
≤ ϕ2(S(yn−2, yn−2, yn−1))

· · · · · ·
≤ ϕn−1(S(y1, y1, y2)).
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By Lemma 1.10 , for m > n we have

S(yn, yn, ym) ≤ 2S(yn, yn, yn+1) + S(yn+1, yn+1, ym)
≤ 2[S(yn, yn, yn+1) + S(yn+1, yn+1, yn+2)] + S(yn+2, yn+2, ym)

· · · · · ·

≤ 2
m−2∑
i=n

S(yi, yi, yi+1) + S(ym−1, ym−1, ym)

≤ 2[ϕn−1(S(y1, y1, y2)) + ϕn(S(y1, y1, y2)) + · · · + ϕm−2(S(y1, y1, y2))]

= 2
m−2∑

i=n−1
ϕi(S(y1, y1, y2)).

Since
∞∑

n=1
ϕn(t) < ∞ for all t > 0, so S(yn, yn, ym) → 0 as n → ∞. Therefore, for each ε > 0, there exists

n0 ∈ N such that for each n, m ≥ n0, S(yn, yn, ym) < ε. Hence, {yn} is a Cauchy sequence in X. Since
X is a complete S-metric space, there exists u ∈ X such that

lim
n→∞

Ax2n = lim
n→∞

Ux2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Tx2n+2 = u.

Since T is continuous, so we have

lim
n→∞

T 2x2n+2 = Tu and lim
n→∞

TAx2n = Tu.

And since (A, T ) is compatible, then limn→∞ S(ATx2n, ATx2n, TAx2n) = 0. So by Lemma 1.13, we have
limn→∞ ATx2n = Tu.

Suppose that Tu ̸= u, by condition (2), we obtain

S(ATx2n, ATx2n, Bx2n+1)
≤ ϕ(max{S(T 2x2n, T 2x2n, Ux2n+1), k1S(ATx2n, ATx2n, T 2x2n),

k2S(Bx2n+1, Bx2n+1, Ux2n+1), k3S(ATx2n, ATx2n, Bx2n+1)}). (3)

Taking the upper limit as n → ∞ in (3), we get

S(Tu, Tu, u) ≤ ϕ(max{S(Tu, Tu, u), 0, 0, k3S(Tu, Tu, u)})
= ϕ(S(Tu, Tu, u)).

Hence, S(Tu, Tu, u) ≤ ϕ(S(Tu, Tu, u)) < S(Tu, Tu, u), which is a contradiction. So, Tu = u.
Similarly, since U is continuous, we obtain that

lim
n→∞

U2x2n+1 = Uu and lim
n→∞

UBx2n+1 = Uu.

And since (B, U) is compatible, then limn→∞ S(BUx2n+1, BUx2n+1, UBx2n+1) = 0. So by Lemma 1.13,
we have limn→∞ BUx2n+1 = Uu.

Suppose that Uu ̸= u, by condition (2), we obtain

S(Ax2n, Ax2n, BUx2n+1)
≤ ϕ(max{S(Tx2n, Tx2n, U2x2n+1), k1S(Ax2n, Ax2n, Tx2n),

k2S(BUx2n+1, BUx2n+1, U2x2n+1), k3S(Ax2n, Ax2n, BUx2n+1)}). (4)

Taking the upper limit as n → ∞ in (4), we get

S(u, u, Ru) ≤ ϕ(max{S(u, u, Uu), 0, 0, k3S(u, u, Uu)})
= ϕ(S(u, u, Uu)).
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Consequently, S(u, u, Uu) ≤ ϕ(S(u, u, Uu)) < S(u, u, Uu), which is a contradiction. So, Uu = u. Hence,
we have Tu = Uu = u.

Also, we can apply condition (2) to obtain

S(Au, Au, Bx2n+1) ≤ ϕ(max{S(Tu, Tu, Ux2n+1), k1S(Au, Au, Tu),
k2S(Bx2n+1, Bx2n+1, Ux2n+1), k3S(Au, Au, Bx2n+1)}). (5)

Taking the upper limit as n → ∞ in (5), we have

S(Au, Au, u) ≤ ϕ(max{S(Tu, Tu, u), k1S(Au, Au, Tu),
k2S(u, u, u), k3S(Au, Au, u)})

≤ max{k1, k3}S(Au, Au, u).

if Au ̸= u, then this implies that max{k1, k3} ≥ 1, which is a contradiction. Hence, from ϕ(t) < t for all
t > 0, we have Au = u.

Finally, by using of condition (2), we get

S(u, u, Bu) = S(Au, Au, Bu)
≤ ϕ(max{S(Tu, Tu, Uu), k1S(Au, Au, Tu),

k2S(Bu, Bu, Uu), k3S(Au, Au, Bu)})
≤ max{k2, k3}S(u, u, Bu).

if Bu ̸= u, then this implies that max{k2, k3} ≥ 1, which is a contradiction. Hence, from ϕ(t) < t for all
t > 0, we have Bu = u.

Thus, we have Tu = Uu = Au = Bu = u, that is, u is a common fixed point of A, B, U and T .
Suppose that p is another common fixed point of A, B, U and T , that is, p = Ap = Bp = Up = Tp.

If u ̸= p, then by condition (2), we have that

S(u, u, p) = S(Au, Au, Bp)
≤ ϕ(max{S(Tu, Tu, Up), k1S(Au, Au, Tu),

k2S(Bp, Bp, Up), k3S(Au, Au, Bp)})
= ϕ(max{S(u, u, p), k1S(u, u, u), k2S(p, p, p), k3S(u, u, p)})
≤ ϕ(S(u, u, p)).

Hence, S(u, u, p) ≤ ϕ(S(u, u, p)) < S(u, u, p), which is a contradiction. Hence, u = p. Therefore, u is a
unique common fixed point of A, B, U and T . This completes the proof.

Remark 2.2. Theorem 2.1 of this paper extends Theorem 2.1 of [14] from two mappings to four mappings
and changes condition from closed subset to continuous and strengthens condition from weakly compatible
to compatible. And it’s worth noting that Theorem 2.1 of this article is a further extension of Theorem
2.2 of [15].

Remark 2.3. if x = y in (2) of Theorem 2.1, and by (1), then we have

S(Ay, Ay, Bz) = d(Ay, Bz) ≤ ϕ(max{d(Ty, Uz), k1d(, Ay, Ty), k2d(Bz, Uz), k3d(Ay, Bz)}).

Corollary 2.4. Let (X, S) be a complete S-metric space and let A, U : X → X be two mappings such
that

(i) A(X) ⊆ U(X);
(ii) U is continuous;
(iii) the pair (A, U) is compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 such that

S(Ax, Ay, Az) ≤ ϕ(max{S(Ux, Uy, Uz), k1S(Ax, Ax, Ux),
k2S(Az, Az, Uz), k3S(Ay, Ay, Az)}).

Journal of Advances in Applied Mathematics, Vol. 4, No. 2, April 2019 49

Copyright © 2019 Isaac Scientific Publishing JAAM



Then A and U have a unique common fixed point in X.

Proof. If we take A = B and U = T in Theorem 2.1, then Theorem 2.1 follows that A and U have a
unique common fixed point.

Corollary 2.5. Let (X, S) be a complete S-metric space and let A, B, : X → X be two mappings such
that

S(Ax, Ay, Bz) ≤ ϕ(max{S(x, y, Uz), k1S(Ax, Ax, x), k2S(Bz, Bz, z), k3S(Ay, Ay, Bz)}).

Then A and B have a unique common fixed point in X.

Proof. If we take U and T as identity mappings on X, then Theorem 2.1 follows that A and B have a
unique common fixed point.

Theorem 2.6. Let (X, S) be a complete S-metric space and let A, B, U, T : X → X be mappings
satisfying the following conditions:
(i) A(X) ⊆ U(X), B(X) ⊆ T (X);
(ii) U and T are continuous;
(iii) the pair (A, T ) and (B, U) are compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 and p, q ∈ Nsuch that

S(Apx, Apy, Bqz) ≤ ϕ(max{S(Tx, Ty, Uz), k1S(Apx, Apx, Tx),
k2S(Bqz, Bqz, Uz), k3S(Apy, Apy, Bqz)}). (6)

Then the maps A, B, U and T have a unique common fixed point.

Proof. (i) When p = q = 1, we have Au = Bu = Uu = Tu = u, u is a unique common fixed point of
A, B, U and T .

(ii) If one of p and q is not equal to 1. Similar to Theorem 2.1, we can prove that Ap, Bq, U and T
have a unique common fixed point u, that is, Apu = Bqu = Uu = Tu = u. Now, we should prove u is
unique common fixed point of A, B, U and T . Indeed,

Ap(Au) = Ap+1u = A(Apu) = Au = A(Tu) = T (Au).

So, Au is a common fixed point of Ap and T . Suppose that Au ̸= u, and

S(Au, Au, u) = S(Au, Au, Bqu)
= S(Ap(Au), Ap(Au), Bqu)
≤ ϕ(max{S(T (Au), T (Au), Uu), k1S(Ap(Au), Ap(Au), T (Au)),

k2S(Bqu, Bqu, Uu), k3S(Ap(Au), Ap(Au), Bqu)})
= ϕ(max{S(Au, Au, u), k1S(Au, Au, Au),

k2S(u, u, u), k3S(Au, Au, u)})
≤ ϕ(S(Au, Au, u)).

Hence, S(Au, Au, u) ≤ ϕ(S(Au, Au, u)) < S(Au, Au, u), which is a contradiction. It means that Au = u.
And,

Bq(Bu) = Bq+1u = B(Bqu) = Bu = B(Uu) = U(Bu).

Thus, Bu is a common fixed point of Bq and U . Suppose that Bu ̸= u, and

S(u, u, Bu) = S(Apu, Apu, Bq(Bu))
≤ ϕ(max{S(Tu, Tu, U(Bu)), k1S(Apu, Apu, Tu),

k2S(Bq(Bu), Bq(Bu), U(Bu)), k3S(Apu, Apu, Bq(Bu))})
= ϕ(max{S(u, u, Bu), k1S(u, u, u),

k2S(Bu, Bu, Bu), k3S(u, u, Bu)})
≤ ϕ(S(u, u, Bu)).
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Hence, S(u, u, Bu) ≤ ϕ(S(u, u, Bu)) < S(u, u, Bu), which is a contradiction. It means that Bu = u.
Therefore, Au = Bu = Uu = Tu = u. Thus, u is a unique common fixed point of A, B, U and T . This
completes the proof.

Remark 2.7. if x = y in (6) of Theorem 2.6, and by (1), then we have

S(Apy, Apy, Bqz) = d(Apy, Bqz) ≤ ϕ(max{d(Ty, Uz), k1d(, Apy, Ty),
k2d(Bqz, Uz), k3d(Apy, Bqz)}).

Corollary 2.8. Let (X, S) be a complete S-metric space and let A, B, U, T : X → X be mappings
satisfying the following conditions:
(i) A(X) ⊆ U(X), B(X) ⊆ T (X);
(ii) U and T are continuous;
(iii) the pair (A, T ) and (B, U) are compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 and p ∈ Nsuch that

S(Apx, Apy, Bpz) ≤ ϕ(max{S(Tx, Ty, Uz), k1S(Apx, Apx, Tx),
k2S(Bpz, Bpz, Uz), k3S(Apy, Apy, Bpz)}).

Then the maps A, B, U and T have a unique common fixed point.
Proof. Let p = q and the process of proof is similar to the proof of Theorem 2.6.

Theorem 2.9. Let (X, S) be a complete S-metric space and let A, B, U, T : X → X be mappings
satisfying the following conditions:
(i) A(X) ⊆ U(X), B(X) ⊆ T (X);
(ii) U and T are continuous;
(iii) the pair (A, T ) and (B, U) are compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2 < 1 such that

S(Ax, Ay, Bz) ≤ ϕ(max{S(Tx, Ty, Uz), k1S(Ax, Tx, Tx), k2S(Bz, Uz, Uz)})
Then the maps A, B, U and T have a unique common fixed point.
Proof. Let x0 ∈ X be arbitrary point of X. From condition (i) we can construct a sequence {yn} in X
as follows:

y2n = Ax2n = Ux2n+1, y2n+1 = Bx2n+1 = Tx2n+2, n ≥ 0.

Now, we show that {yn} is a Cauchy sequence. Let dn+1 = S(yn, yn, yn+1). Then we have

d2n+1 = S(y2n, y2n, y2n+1)
= S(Ax2n, Ax2n, Bx2n+1)
≤ ϕ(max{S(Tx2n, Tx2n, Ux2n+1), k1S(Ax2n, Tx2n, Tx2n),

k2S(Bx2n+1, Ux2n+1, Ux2n+1)})
= ϕ(max{S(y2n−1, y2n−1, y2n), k1S(y2n, y2n−1, y2n−1),

k2S(y2n+1, y2n, y2n)})
= ϕ(max{d2n, k1d2n, k2d2n+1}).

Thus d2n+1 ≤ ϕ(d2n). By similar arguments we have,

d2n = S(y2n−1, y2n−1, y2n)
= S(y2n, y2n, y2n−1)
= S(Ax2n, Ax2n, Bx2n−1)
≤ ϕ(max{S(Tx2n, Tx2n, Ux2n−1), k1S(Ax2n, Tx2n, Tx2n),

k2S(Bx2n−1, Ux2n−1, Ux2n−1)})
= ϕ(max{S(y2n−1, y2n−1, y2n−2), k1S(y2n, y2n−1, y2n−1),

k2S(y2n−1, y2n−2, y2n−2)})
= ϕ(max{d2n−1, k1d2n, k2d2n−1}).
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Thus d2n ≤ ϕ(d2n−1).
The process of next proof is similar to the proof of Theorem 2.1.

Theorem 2.10. Let (X, S) be a complete S-metric space and let A, B, U, T : X → X be mappings
satisfying the following conditions:

(i) A(X) ⊆ U(X), B(X) ⊆ T (X);
(ii) U and T are continuous;
(iii) the pair (A, T ) and (B, U) are compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2 < 1 and p, q ∈ N such that

S(Apx, Apy, Bqz) ≤ ϕ(max{S(Tx, Ty, Uz), k1S(Apx, Tx, Tx), k2S(Bqz, Uz, Uz)})

Then the maps A, B, U and T have a unique common fixed point.

Proof. The proof is similar to the proof of Theorem 2.6.

Corollary 2.11. Let (X, S) be a complete S-metric space and let A, B, U, T : X → X be mappings
satisfying the following conditions:

(i) A(X) ⊆ U(X), B(X) ⊆ T (X);
(ii) U and T are continuous;
(iii) the pair (A, T ) and (B, U) are compatible;
(iv) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2 < 1 and p ∈ N such that

S(Apx, Apy, Bpz) ≤ ϕ(max{S(Tx, Ty, Uz), k1S(Apx, Tx, Tx), k2S(Bpz, Uz, Uz)})

Then the maps A, B, U and T have a unique common fixed point.

Example 2.12. Let X = [0, 1] and (X, S) be a complete S-metric space. For any x, y, z ∈ X, define
S(x, y, z) = |x − z| + |y − z| and mappings A, B, U, T : X → X on X by

Ax = x

16
, Bx = x

8
, Tx = x

4
, Ux = x

2
.

Then, it is easy to see that A(X) ⊆ U(X) and B(X) ⊆ T (X). Moreover, the pair (A, T ) and (B, U) are
compatible mappings.

Also, for all x, y, z ∈ X, we have

S(Ax, Ay, Bz) = |Ax − Bz| + |Ay − Bz|

= | x

16
− z

8
| + | y

16
− z

8
|

= 1
4

|x
4

− z

2
| + 1

4
|y
4

− z

2
|

≤ 3
4

|Tx − Rz| + 3
4

|Ty − Rz|

≤ S(Tx, Ty, Uz)
≤ ϕ(max{S(Tx, Ty, Uz), k1S(Ax, Ax, Tx),

k2S(Bz, Bz, Uz), k3S(Ay, Ay, Bz)}),

where 0 < k1, k2, k3 < 1. Therefore, all the conditions of Theorem 2.1 are satisfied and 0 is the unique
common fixed point of A, B, U and T .

3 Conclusion

In this paper, we established some common fixed point theorems about two pair maps in S-metric space.
The presented theorems extend, generalize and improve many existing results in S-metric spaces in the
literature. Our results differ from those in the literature and they may be the motivation to other authors
for extending and improving these results to be suitable tools for their applications.

52 Journal of Advances in Applied Mathematics, Vol. 4, No. 2, April 2019

JAAM Copyright © 2019 Isaac Scientific Publishing



Acknowledgments. This work is supported by the Humanity and Social Science Planning (Youth)
Foundation of Ministry of Education of China (Grand No. 14YJAZH095, 16YJC630004), the National
Natural Science Foundation of China (Grand No. 61374081), the Natural Science Foundation of Guang-
dong Province ( 2015A030313485) and the Guangzhou Science and Technology Project (Grant No.201707010494).

References

1. Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund.
Math. 3(1), 133-181 (1922).

2. Kadelburg, Z., Murthy, P.P., Radenović, S.: Common fixed points for expansive mappings in cone metric
spaces. Int. J. Math. Anal. 5(27), 1309-1319 (2011).

3. Aghajani, A., Abbas, M., Roshan, J.R.: Common fixed point of generalized weak contractive mappings in
partially ordered b-metric spaces. Math. Slovaca. 64(4), 941-960 (2014).

4. Shatanawi, W.: Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces. Fixed
Point Theory Appl. (2010), Article ID 181650.

5. Sedghi, S., Shobe, N., Aliouche, A.: A generalization of fixed point theorems in S-metric spaces. Mat. Vesnik.
64(3), 258-266 (2012).

6. Bakhtin I.A.: The contraction principle in quasimetric spaces. Func. An., Ulianowsk, Gos. Ped. Ins. 30, 26-37
(1989).

7. Sedghi, S., Dung, N. V.: Fixed point theorems on S-metric spaces. Mat. Vesnik. 66(1), 113-124 (2014).
8. Sedghi, S., Shobe, N., Došenović T.: Fixed point results in S-metric spaces. Nonlinear Funct. Anal. Appl.

20(1), 55-67 (2015).
9. Dung N.V.: On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric

spaces. Fixed Point Theory Appl. 2013,48 (2013).
10. Sedghi, S., Altun, I., Shobe, N., Salahshour, M. A.: Some properties of S-metric spaces and fixed point results.

Kyungpook Math. J. 54(1), 113-122 (2014).
11. Sedghi, S., Došenović, T., Mahdi Rezaee, M., Radenovicąä, S.: Common fixed point theorems for contractive

mappings satisfying Φ-maps in S-metric spaces. Acta Univ. Sapientiae Math. 8(2), 298-311 (2016).
12. Mojaradi Afra, J.: Double contraction in S-metric spaces. Int.J. Math. Anal. 9(3), 117-125 (2015).
13. Prudhvi, K.: Fixed point theorems in S-metric spaces. Univers. J. Comput. Math. 3(2), 19-21 (2015).
14. Kyu Kim, J., Sedghi, S., Gholidahneh, A., Mahdi Rezaee, M.: Fixed point theorems in S-metric spaces. East

Asian Math. J. 32(5), 677-684 (2016).
15. Sedghi, S., Shobe, N., Došenović , T.: Common fixed point of four maps in S-metric spaces. Mathematical

Sciences. 12: 137-143 (2018).
16. Sedghi, S., Gholidahneh, A., Došenović, T., Esfahani, J., Radenovic ąä, S.: Common fixed point of four maps

in Sb-metric spaces. J. Linear Topol. Algebra 05(02), 93-104 (2016).

Journal of Advances in Applied Mathematics, Vol. 4, No. 2, April 2019 53

Copyright © 2019 Isaac Scientific Publishing JAAM




