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Abstract This paper addresses the asymptotic synchronization problem for a kind of drive-response
complex networks (DRCNs) under cyber-attacks by using network control systems (NCSs). In order
to reduce the pressure of communication and save the communication bandwidth on NCSs, some
sampled-data-based event-triggered synchronization feedback controllers and logarithmic quantiz-
ers are designed by taking into account the effect of the NCSs’ transmission delays. Using Lyapunov
stability theories, several sufficient conditions are obtained to guarantee the existence of sampled-
data-based event-triggered synchronization controllers for the DRCNs with distributed-delay. Then,
the state feedback gains are obtained by solving certain linear matrix inequalities (LMIs). Finally,
a numerical example is provided to illustrate the effectiveness of the sampled-data-based event-
triggered control scheme.
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1 Introduction

Over the past several years, complex dynamic networks (CDNs) has been fully studied owing to its
frequent applications in many research areas, such as electric power grids, telecommunication networks
and food webs. Up to now, considerable interesting studies have been reported on various problems for
all kinds of CDNs [1,2,3,4]. In particular, synchronization is an universal phenomenon in CDNs and there
has been an increasing amount of literature contributing to synchronization in arrays of CDNs [5,6,7,8].
Most of the research here have focused on synchronization among nodes in one network, namely internal
synchronization. However, two (or more) systems could also achieve synchronization, which is external
synchronization. [9] explain how different systems can achieve synchronization without considering the
synchronization of the inner nodes. The synchronization of the drive-response system is an external
synchronization, which means that the state of the response system follows the state of the drive system
by controlling the response system. Therefore, the synchronization of drive-response systems has become
the focus of researchers and achieved some recent results in [10,11].

In numerous control applications, controllers are implemented on continuous-time, such as pinning
control scheme [12], complete synchronization scheme [13], and adaptive synchronization scheme [5].
However, with the rapid development of high-speed computers, modern control systems tend to be
controlled by digital controllers, namely, only the samples of the control input signals at discrete time
instants will be employed. Hence, the systems are always controlled by some discrete-time controllers in
practical applications [4,14]. In order to reduce the difficulty of implementation and analysis, networked
control systems (NCSs) have been proposed. The NCSs, as a capital type of complex dynamical systems,
play an increasingly important role in the social infrastructures [15,16,17]. Nowadays, NCSs are widely
used in various engineering fields due to their advantages such as flexibility, system efficiency and low
maintenance cost. However, due to the limitation of communication bandwidth in the system, there are
many unpredictable problems in NCSs, among these problems, network-induced delay [18], data packet
dropouts [19] and multiple packets [20] are the most prominent. Because the communication resources
in the network are very valuable, these defects will lead to the instability of the NCSs, which will also
increase the difficulty of NCSs to perform control tasks. In order to keep the NCSs running smoothly
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and safely, an advanced methodology needs to be proposed to improve the bandwidth utilization of the
communication channel, so as to offset the influence of network-induced delay, data packet and multiple
packets caused by the network. Therefore, the event-triggered control (ETC) is concerned [21,22,23,24,25].

The basic idea of the ETC is that control tasks are executed when a well-designed event-triggered
condition is met. That is the control tasks are executed only when needed. Hence, the ETC strategy can
effectively reduce resource utilization and meanwhile ensure the desired levels of system performance,
which motivates its wide application in numerous control issues. In [21], the authors investigated the event-
triggered H∞ controller design problem for NCSs by considering the effect of the network transmission
delays. Then [22] developed the ETC method in [21] into a complex networks with uncertain inner
coupling based on periodic sampling. In [25], an effective event-triggered state estimation scheme was
proposed for a class of discrete-time multi-delayed neural networks. In addition, in order to avoid the
Zeno behavior, a sampled-data-based event-triggered scheme was proposed and further developed in [26].
The sampled-data-based event-triggered scheme play an important role in ETC, and a number of results
have been proposed in the literature [27,28]. Nevertheless, the synchronization control of event-triggered
driven-response control networks (DRCNs) based on sampled data has not been studied and it is still a
challenging problem.

In practical applications, signal transmission is usually limited by channel capacity and bandwidth.
As another effective technology in term of improve the communication efficiency, the quantization has
been widely applied in many systems, see, e.g. [29,30,31,32,33]. In [29], the control design problem for
linear networked systems is investigated via event-triggered NCSs with quantization by using a Lyapunov
functional. In [30], event-based control problem for nonlinear systems is concerned by using quantized
control. As we know, there are usually two types of quantization, i.e. uniform quantizer and logarithmic
quantizer, see [31,32,33]. In [32], the authors points out that the logarithmic quantizer performs superior
to the uniform quantizer when it deal with the quantization error. But the signal quantization error may
degrade sampled-data control systems performance severely, especially during in sampled-data systems,
see [33]. Thus, in this case, it is necessary to study the sampled-data-based event-triggered control systems
with quantization.

On the other hand, the security problems in NCSs have aroused much attention in the control commu-
nity [18,19,20]. As the fact that a lot of signals need to be transmitted through networked communication
channels, an offensive behavior named cyber-attacks is exposed. The purpose of the cyber-attacks is to
exploit the vulnerabilities in the communication links to damage the data transmission systems, real-time
sampling data, communication infrastructures and networked devices. At present, there are three major
categories of cyber-attacks, that is denial of service (DoS) [34,35,36], replay attacks [37] and deception at-
tacks [38]. Because of the huge impact of the cyber-attacks, large numbers of researchers have developed a
strong interest in the study of cyber-attacks and have achieved many outstanding results [39,40,41]. The
authors in [39] investigated online deception attack strategy with an event-triggered scheme to against
remote state estimation. By considering the influence of quantization and deception attacks, the prob-
lem of distributed recursive filtering for a kind of discrete time-delay systems was investigated in [40].
Under the replay attacks, the authors studied a variation of the receding-horizon control in [41] and a set
of sufficient conditions were provided to ensure asymptotical and exponential stability. So far, the syn-
chronization problem for DRCNs with cyber-attacks has not been sufficiently discussed especially when
the event-triggered synchronization controller design problem should be investigated more concretely for
DRCNs with discrete-time delay and distributed-delay. Therefore, under measurement quantization and
cyber-attacks, the synchronization control problem for sample-data-based event-triggered systems is still
challenging.

Motivated by the aforementioned issues, in this paper, we will construct some event-triggered syn-
chronization controllers for DRCNs with distributed-delay based on the periodic sampling via NCSs.
Moreover, the effect of the measurement quantization and cyber-attacks are considered. The main con-
tributions of this paper are summarized as follows: (i) A new synchronization error model for DRCNs is
proposed in a integrated framework, which considering the influence of the cyber-attacks, measurement
quantization and communication delays. (ii) In order to save the energy consumption, the sampled-data-
based event-triggered scheme is used to determine whether the current sampled data is transmitted
through the network, and the event-triggered synchronization controller for every node in the network
is different with each other. (iii) The sufficient conditions are given to make sure that the existence
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of event-triggered synchronization controllers, and the event-triggered synchronization controller design
problem can be solved perfectly by solving some LMIs. As far as we all know, there is no research inves-
tigating the asymptotic synchronization of sampled-data-based event-triggered control for DRCNs with
cyber-attacks and quantization, so this is the main purpose of this paper.

Notations: In this paper, Rn respects the n dimensional Euclidean space with Euclidean norm, Rn×n

is the set of n × n real matrix. The notion ∥·∥ refers to Euclidean norm. Let N = {0, 1, 2, . . . } and
L = {1, 2, . . . , N}. For the matrix D ∈ Rn×n, D > 0 (D < 0) is used to represent a positive (negative)
definite matrix, denote by DT and D−1 the transpose and inverse of the matrix D, respectively. We use
an asterisk * in a matrix to denote a term that is induced by symmetry. E{X} denotes the expectation
of stochastic variable X. diag{A1, A2, . . . , AN } and diagN {A} stand for a block-diagonal matrix with
N blocks, which diagonal blocks are Ai, i = 1, 2, . . . , N and A, respectively. ⊗ represents the Kronecker
product of matrix. I denotes the identity matrix with proper dimension.

2 Problem Formulation and Preliminaries

Consider the following drive system with N nodes coupling and distributed-delay:

ẋi(t) = v(t, xi(t)) + c1

N∑
j=1

αijM1xj(t) + c2

N∑
j=1

βijM2xj(t − ς)

+ c3

N∑
j=1

γijM3

∫ t

t−ς

xj(s)ds, for i ∈ L,

(1)

where xi(t) ∈ Rn is the driven state vector of the ith node. v : R+ × Rn → Rn is a continuously
differentiable vector function with v(t, 0) ≡ 0, for t ≥ 0. cj > 0 are the coupling strengths for j = 1, 2, 3.
ς > 0 is a constant delay. M1, M2, M3 ∈ Rn×n are the inner coupling matrix, the delay inner coupling
matrix and the distributed-delay inner coupling matrix, respectively. A = [αij ]N×N , B = [βij ]N×N and
C = [γij ]N×N are the weight configuration matrices. αij > 0, βij > 0, γij > 0 if and only if there exists a
link from node j to node i for any i, j ∈ L.

The corresponding response system of the drive system (1) is defined as following

ẏi(t) = v(t, yi(t)) + c1

N∑
j=1

αijM1yj(t) + c2

N∑
j=1

βijM2yj(t − ς)

+ c3

N∑
j=1

γijM3

∫ t

t−ς

yj(s)ds + ui(t), for i ∈ L,

(2)

where yi(t) ∈ Rn is the response state vector of the ith node, and other parameters are defined the same
as the drive system (1), ui(t) is the control protocol for the ith node.

Remark 1 We assume that each system has N nodes, and the nodes of the two systems correspond
one-to-one, that is, each node in the drive system corresponds to the corresponding node in the response
system, and the nodes in different systems have different dynamic characteristics.

Let the synchronization error be ei(t) = yi(t) − xi(t) for i ∈ L. Then the corresponding error system
of networks (1) and (2) is given by

ėi(t) = ṽ(t, ei(t)) + c1

N∑
j=1

αijM1ej(t) + c2

N∑
j=1

βijM2ej(t − ς)

+ c3

N∑
j=1

γijM3

∫ t

t−ς

ej(s)ds + ui(t), for i ∈ L,

(3)

where ṽ(t, ei(t)) = v(t, yi(t)) − v(t, xi(t)).
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In this paper, we denote the constant sampling period by hi on the ith node, i.e. the sampling
instants can be described as lhi for l ∈ N. As we know, in practical application, many “unnecessary”
signals, which will waste the network communication resources and increase network transmission load,
are sent by periodic sampling mechanism. Hence, an event generator is necessary to be introduced to
determine which sampling signal should be sent out. For each node, we construct an event generator
between the sampler and the NCSs to determine a release time sequence {ti

khi}n
k=0 with ti

0 = 0, which
denotes the time when the newly sampled data are updated to the NCSs. Moreover, the next event-time
instant ti

k+1hi can be determined by

ti
k+1 = ti

k + min
j≥1

{j|(ei((ti
k + j)hi) − ei(ti

khi))T Oi · (ei((ti
k + j)hi) − ei(ti

khi))

> σie
T
i ((ti

k + j)hi)Oiei((ti
k + j)hi)}, (4)

for k ∈ N, where Oi ∈ Rn×n is a positive definite matrix and σi ∈ [0, 1] is a threshold parameter.
Obviously, we have 0 = ti

0 < ti
1 < · · · < ti

k < . . . and {ti
khi}n

k=0 ⊂ {khi}n
k=0.

Remark 2 By the event-trigger mechanism, only parts of sampled data will be transmitted to the con-
troller. Thus the communication burden of the NCSs can be reduced, the transmission energy in NCSs
can be saved and the lifespan of the battery of the NCSs also can be extended.

Remark 3 The frequency of transmitting sampled signals to the NCSs are determined by the threshold
parameter σi. More concretely, the more smaller σi is chosen, the events can be triggered more easier.

Remark 4 Since the inter-event times are longer than the constant sampling period hi for each node
i ∈ L, the Zeno-behavior can be avoid absolutely.

Figure 1. Flow chart of the quantization event-triggered mechanism.

The NCSs have high requirements for the bandwidth and frequency of data transmission. For the sake
of further reducing the load of data transmission and improving the capability of networks, a quantizer
is added between the event-triggered mechanism and the network (see Fig. 1). A static logarithmic
quantizer ρ(·) is placed, which is defined as ρ(ϑ) = [ρ1(ϑ1), ρ2(ϑ2), ..., ρn(ϑn)]T , ∀ϑ ∈ Rn, where for each
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ρj(·)(1 ≤ j ≤ n) is the jth quantizer with the quantized density which is denoted by ρi
j with 0 < ρj < 1,

for j = 1, 2, ..., n, i = 0, ±1, ±2, .... Then, the set of quantization levels are defined as following

Nj = {±n
(j)
i : n

(j)
i = ρi

jn
(j)
0 , i = 0, ±1, ±2, ...}

∪
{0},

with n
(j)
0 > 0. Moreover, the jth logarithmic quantizer of ρ(·) is defined as

ρj(d) =

 n
(j)
i , 1

1+µj
n

(j)
i < d < 1

1−µj
n

(j)
i ,

0, d = 0,
−ρj(−d), d < 0,

where µj = (1 − ϱj)/(1 + ϱj). Using the sector bound method [32], we can get the following quantization
error:

ρj(d) − d = △j(d)d,

where|△j(d)| ≤ µj , d ∈ R. Then, we can obtain

ρj(d) = (1 + △j(d))d.

Let △(D) = diagn{△i(Di)} for D ∈ Rn. Consequently, the quantized state can be rewritten as

ρ(D) = (I + △(D))D. (5)

Remark 5 The event-triggered scheme is an effective approach to minimize the use of the communica-
tion resources. Quantization in control systems, as another effective method to save the network band-
width, has become a hot research topic. In this paper, not only did we think over how to reduce the use
of the communication resources by adopting the event-triggering scheme, but also consider the effect of
quantization.

Remark 6 There are two main types of quantization in the existing literatures, that is logarithmic
quantization and uniform quantization [31]. The uniform quantizer is a useful mechanism because of its
simplicity, but it suffers from dead-zone area, which increases proportionally with the quantization level.
In comparison to that, the magnitude of the logarithmic quantization error is multiplicative, and decrease
as the input signal becomes small. Due to this advantage, logarithmic quantization is a more effective
means to save the network bandwidth in NCSs.

In the following, the impact of transmission delays in NCSs will be considered. Suppose the transmis-
sion delay in the NCSs’ communication is ηi

k ∈ [0, ηi] for the ith node on the kth transmission. Hence,
for each node i, the real control input can be defined as

ui(t) = Kiρ(ei(ti
khi)) = Ki(I + △(ei(ti

khi)))ei(ti
khi),

for t ∈ [ti
khi + ηi

k, ti
k+1hi + ηi

k+1), where Ki denotes the feedback control gain matrix to be designed. For
the convenience of writing, we replace △(ei(ti

khi)) by △ in the following, then the ui(t) can be rewritten
as

ui(t) = Kiρ(ei(ti
khi)) = Ki(I + △)ei(ti

khi), (6)

for t ∈ [ti
khi + ηi

k, ti
k+1hi + ηi

k+1).
Taking similar discussion as [21], we divide the time interval into the following two cases for each

i ∈ L and k ∈ N:
Case 1. If ti

khi + hi + ηi ≥ ti
k+1hi + ηi

k+1, define two functions as

πi(t) = e(ti
khi) − e(ti

khi) = 0 (7)

and
ηi(t) = t − ti

khi, for t ∈ [ti
khi + ηi

k, ti
k+1hi + ηi

k+1). (8)

Obviously, ηi
k ≤ ηi(t) ≤ (ti

k+1 − ti
k)hi + ηi

k+1 ≤ hi + ηi
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Figure 2. The time evolution of the sampling and transmission series for Case 2

Case 2. If ti
khi + hi + ηi < ti

k+1hi + ηi
k+1 (see Fig. 2). There exists a positive integer ζi such that

(ti
k + ζi)hi + ηi ≤ ti

k+1hi + ηi
k+1 < (ti

k + ζi + 1)hi + ηi.

Divide the time interval [ti
khi + ηi

k, ti
k+1hi + ηi

k+1) into the following form

[ti
khi + ηi

k, ti
k+1hi + ηi

k+1) =
ζi∪

j=0
Λi

k,j , (9)

where 
Λi

k,0 = [ti
khi + ηi

k, (ti
k + 1)hi + ηi),

Λi
k,mi

= [(ti
k + mi)hi + ηi, (ti

k + mi + 1)hi + ηi),
Λi

k,ζi
= [(ti

k + ζi)hi + ηi, ti
k+1hi + ηi

k+1),

for mi = 1, 2, ..., ζi − 1. We define

ηi(t) = t − (ti
k + j)hi for t ∈ Λi

k,j and j = 0, 1, ..., ζi.

Obviously, it has {
ηi

k ≤ ηi(t) ≤ hi + ηi, t ∈ Λi
k,0,

ηi
k ≤ ηi ≤ ηi(t) ≤ hi + ηi, t ∈ Λi

k,j ,

for j = 1, 2, ..., ζi. Therefore, we obtain
ηi

k ≤ ηi(t) ≤ ηi
M ,

where ηi
M = hi + ηi. Furthermore, we define the function

πi(t) = e(ti
khi) − e((ti

k + j)hi),

for t ∈ Λi
k,j and j = 0, 1, ..., ζi. Consequently, we have

πi(t) = e(ti
khi) − e(t − ηi(t)), t ∈ [ti

khi + ηi
k, ti

k+1hi + ηi
k+1).

By the definition of ηi(t) and πi(t) for i ∈ L, the triggering algorithm in (4) and control input (6) can
be rewritten as

πT
i (t)Oiπi(t) ≤ σie

T
i (t − ηi(t))Oiei(t − ηi(t)), (10)

ui(t) = Ki(I + △)πi(t) + Ki(I + △)ei(t − ηi(t)), (11)

for t ∈ [ti
khi + ηi

k, ti
k+1hi + ηi

k+1).

Remark 7 The transmission speed from the NCS to the controller will be affected by the communication
bandwidth, the environment of the device and so on. Therefore, it is naturally to consider the transmission
delays.
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Regarding the openness of the NCS, some reasons, such as the controller signal is easy to theft,
leakage or malicious damage, may lead the controller to fail to operate normally or issue wrong control
instructions. Hence, we assume that the information transmitted through the communication network
is fragile to be attacked. In this paper, the stochastic deception attack on the controller is considered.
We define the attack signal as a non-linear function ϕ(ui(t)) with ϕ(0) = 0, which is associated with the
control input ui(t).

Let ξi ∈ {0, 1} is employed to describe the randomly occurring possibility of cyber-attacks, which is
a stochastic variable obeying the Bernoulli distribution with

P{ξi = 1} = δi and P{ξi = 0} = 1 − δi.

Consequently, we can get

E{ξi} = δi and E{(ξi − δi)2} = δi(1 − δi) := ϖ2
i ,

where δi and ϖ2
i are the expectation and the mathematical variance of ξi, respectively.

Let oi(t) = ξi, for t ∈ [ti
khi + ηi

k, ti
k+1hi + ηi

k+1). Considering the effect of cyber-attack in NCS, the
control law in (11) can be expressed as follows

ūi(t) = ui(t) + oi(t)ϕ(ui(t))
= Ki(I + △)(πi(t) + ei(t − ηi(t))) + oi(t)ϕ(ui(t)).

(12)

Remark 8 According to the formula (12), when oi(t) = 1, it means that the aggressive signals are
delivered and the controller suffers from malicious attack signals, then the real control law in (12) can
be rewritten as ūi(t) = ui(t) + ϕ(ui(t)). When oi(t) = 0, means the network environment is secure,
regardless of the impact of cyber-attacks in information transmission, the control law can be represented
as ū(t) = ui(t).

Let

e(t) = [eT
1 (t), eT

2 (t), ..., eT
N (t)]T ,

e(t) = [
∫ t

t−ς

eT
1 (s)ds,

∫ t

t−ς

eT
2 (s)ds, ...,

∫ t

t−ς

eT
N (s)ds]T ,

eηM
(t) = [eT (t − η1

M ), eT (t − η2
M ), ..., eT (t − ηN

M )]T ,

e(t − η(t)) = [eT
1 (t − η1(t)), eT

2 (t − η2(t)), ..., eT
N (t − ηN (t))]T ,

π(t) = [πT
1 (t), πT

2 (t), ..., πT
N (t)]T ,

V(t, e(t)) = [ṽT (t, e1(t)), ṽT (t, e2(t)), ..., ṽT (t, eN (t))]T ,

K = diag{K1, K2, ..., KN },

O = diag{O1, O2, ..., ON },

Θ = diagN {σi} ⊗ I, ηM = max
i∈L

{ηi
M },

△̄ = diagN {I + △}, o(t) = diagN {oi(t)} ⊗ I,

Φ(u(t)) = [ϕT (u1(t), ϕT (u2(t))), ..., ϕT (uN (t))]T .

Then, the error dynamics (3) can be expressed by the following compact form

ė(t) = V(t, e(t)) + c1(A ⊗ M1)e(t) + c2(B ⊗ M2)e(t − ς)
+ c3(C ⊗ M3)e(t) + K△̄(π(t) + e(t − η(t))) + o(t)Φ(u(t)), (13)

for t ≥ 0, and the triggering algorithm (10) can be rewritten as

πT (t)Oπ(t) ≤ eT (t − η(t))ΘOe(t − η(t)). (14)
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Definition 1 The drive system (1) and the response system (2) are said achieve asymptotical synchro-
nization if the synchronization error dynamical system (13) is asymptotically stable.

The aim of this paper is to design suitable controller gain matrices Ki for i ∈ L such that the drive
network (1) and the response network (2) achieve asymptotically synchronization, i.e., the asymptoti-
cal stability of the error dynamical system (13). In order to derive this results, we give the following
assumptions and lemmas.

Assumption 1 [42] The attack signal function Φ(·) and the vector valued function V(·) are assumed to
be nonlinear functions, which satisfy the following Lipschitz constraints

∥Φ(x) − Φ(y)∥ ≤ ∥λ1(x − y)∥ , (15)
∥V(x) − V(y)∥ ≤ ∥λ2(x − y)∥ , (16)

where λ1 and λ2 are constant matrices representing for the upper bounds of Φ(·) and V(·).

Lemma 1 [22] Let E,S and H be real matrices with appropriate dimensions,and H satisfies HT H ≤ I.
Then,for any scalar ϵ > 0, the following inequality holds:

ET HST + SHT E ≤ ϵSST + ϵ−1ET E. (17)

Lemma 2 [43] For given positive constant ηM , if function η(t) satisfies η(t) ∈ (0, ηM ], then there exists
R > 0 such that

−ηM

∫ t

t−ηM

ėT (s)Rė(s) ≤

 e(t)
e(t − η(t))
e(t − ηM )

T  −R R 0
∗ −2R R
∗ ∗ −R

  e(t)
e(t − η(t))
e(t − ηM )

 .

3 Event-triggered Controller Design

In this section, some appropriate controller gain matrices Ki will be designed for the response system
(2) so that the drive network (1) and the response network (2) achieve asymptotic stability under the
event-triggered strategy in (4).

Theorem 1 Suppose Assumption 1 is satisfied. For the given controller gain matrices Ki(i ∈ L), the
drive network (1) and the response network (2) achieve asymptotically stable under the event-triggered
strategy in (4), if there exist some positive matrices P , Qi, R, T , Oi , for i ∈ L such that

Σ =


Σ11 Σ12 Σ13 Σ14

∗ −R 0 0
∗ ∗ −R 0
∗ ∗ ∗ −I

 < 0, (18)
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where

Σ11 =



Ξ11 Ξ12 Ξ13 0 Ξ15 Ξ16 P P δ̄
∗ −T 0 0 0 0 0 0
∗ ∗ Ξ33 0 0 0 0 0
∗ ∗ ∗ Ξ44 R 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ −O 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


,

Σ12 = ηM (RF)T ,

F =
[
c1(A ⊗ M1) c2(B ⊗ M2) 0 0 K△̄ K△̄ I δ̄

]
,

Σ13 =
[
0 0 0 0 0 0 0 ηM RW

]T
,

Σ14 =
[
0 0 0 0 λ̄1K△̄ λ̄1K△̄ 0 0

]T
,

Ξ11 = c1P (A ⊗ M1) + c1(A ⊗ M1)T P + Q − R + T + λ̄T
2 λ̄2,

Ξ12 = c2P (B ⊗ M2), Ξ13 = c3P (C ⊗ M3),
Ξ15 = PK△̄ + R, Ξ16 = PK△̄,

Ξ33 = η2
M c3(C ⊗ M3)T Rc3(C ⊗ M3),

Ξ44 = − R − Q, Ξ55 = ΘO − 2R,

λ̄1 = diagN {λ1}, λ̄2 = diagN {λ2},

W = diagN {ϖi} ⊗ I, δ̄ = diagN {δi} ⊗ I.

proof 1 Let

V (t) =
4∑

i=1
Vi(t), (19)

where

V1(t) = eT (t)Pe(t),

V2(t) =
∫ t

t−ηM

eT (s)Qe(s)ds,

V3(t) = ηM

∫ t

t−ηM

∫ t

s

ėT (w)Rė(w)dwds,

V4(t) =
∫ t

t−ς

eT (s)Te(s)ds.

Calculating the time derivative of V (t) along the error dynamics (13) and taking expectation on it, we
have

E{V̇1(t)} = 2eT (t)P [V(t, e(t)) + c1(A ⊗ M1)e(t)
+ c2(B ⊗ M2)e(t − ς) + c3(C ⊗ M3)e(t)
+ K△̄(π(t) + e(t − η(t))) + δ̄Φ(u(t))], (20)

E{V̇2(t)} = eT (t)Qe(t) − eT (t − ηM )Qe(t − ηM ), (21)

E{V̇3(t)} = E{η2
M ėT (t)Rė(t) − ηM

∫ t

t−ηM

ėT (s)Rė(s)ds}, (22)

E{V̇4(t)} = eT (t)Te(t) − eT (t − ς)Te(t − ς). (23)
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Notice that ė(t) = X + (o(t) − δ̄)Φ(u(t)), where

X = V(t, e(t)) + c1(A ⊗ M1)e(t) + c2(B ⊗ M2)e(t − ς)
+c3(C ⊗ M3)e(t) + K△̄(π(t) + e(t − η(t))) + δ̄Φ(u(t)).

Then, we can obtain

E{η2
M ėT (t)Rė(t)} = η2

M (X T RX + ΦT (u(t))WT RWΦ(u(t))). (24)

According to Assumption 1, we can derive

ΦT (u(t))Φ(u(t)) ≤ uT (t)λ̄T
1 λ̄1u(t), (25)

VT (t, e(t))V(t, e(t)) ≤ eT (t)λ̄T
2 λ̄2e(t). (26)

It follows from (20)-(26) and Lemma 2 that

E{V̇ (t)} ≤ 2eT (t)P [V(t, e(t)) + c1(A ⊗ M1)e(t)
+ c2(B ⊗ M2)e(t − ς) + c3(C ⊗ M3)e(t)
+ K△̄(π(t) + eη(t)) + δ̄Φ(u(t))]
+ eT (t)Qe(t) − eT (t − ηM )Qe(t − ηM )
+ η2

M (X T RX + ΦT (u(t))WT RWΦ(u(t)))

+

 e(t)
e(t − η(t))
e(t − ηM )

T −R R 0
∗ −2R R
∗ ∗ −R

  e(t)
e(t − η(t))
e(t − ηM )


+ eT (t)Te(t) − eT (t − ς)Te(t − ς)
+ eT (t − η(t))ΘOe(t − η(t)) − πT (t)Oπ(t)
+ uT (t)λ̄T

1 λ̄1u(t) − ΦT (u(t))Φ(u(t))
+ eT (t)λ̄T

2 λ̄2e(t) − VT (t, e(t))V(t, e(t))
= ζT (t)[Σ11 + η2

M FT RF ]ζ(t) + η2
M ΦT (u(t))WT RWΦ(u(t))

+ uT (t)λ̄T
1 λ̄1u(t)

= ζT (t)[Σ11 + Σ12R−1ΣT
12 + Σ13R−1ΣT

13 + Σ14ΣT
14]ζ(t),

where

X = Fζ(t) + c3(C ⊗ M3)ē(t),
ζ(t) = [eT (t), eT (t − ς), eT (t), eT

ηM
, eT

η (t), πT (t), VT (t, e(t)), ΦT (u(t))]T .

Consequently, by using Schur complement lemma and (18), we have E{V̇(t)} < 0. Therefore, the
error system (13) is asymptotically stable. This completes the proof.

It is worth mentioning that Theorem 1 does not design a reasonable controller. In the following, we
will deal with the synchronization controller design problem based on the stability criterion established
in Theorem 1.

Theorem 2 Suppose the Assumption 1 is satisfied. For given scalars δi > 0, ηM > 0, ϵj > 0 (j = 1, 2),
the drive network (1) and the response network (2) achieve asymptotically synchronization, if there exist
matrices F = diag{F1, F2, . . . , FN } > 0, X = diag{X1, X2, . . . , XN } > 0, T̄ > 0, Q̄ > 0, Ō > 0, R̄ > 0
such that

Ψ =


Σ̄1 Φ11 Φ12 Φ13
∗ (ϵ1 + ϵ2)(−2F + I) 0 0
∗ ∗ −ϵ1µ2I 0
∗ ∗ ∗ −ϵ2µ2I

 < 0, (27)

64 Journal of Advances in Applied Mathematics, Vol. 6, No. 2, April 2021

JAAM Copyright © 2021 Isaac Scientific Publishing



where

Σ̄1 =


Σ̄11 Σ̄12 Σ̄13 Σ̄14 Σ̄15

∗ −2F + R̄ 0 0 0
∗ ∗ −2F + R̄ 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 , (28)

Σ̄11 =



Ξ̄11 Ξ̄12 Ξ̄13 0 Ξ̄15 Ξ̄16 I δ̄
∗ −T̄ 0 0 0 0 0 0
∗ ∗ Ξ̄33 0 0 0 0 0
∗ ∗ ∗ Ξ̄44 R̄ 0 0 0
∗ ∗ ∗ ∗ Ξ̄55 0 0 0
∗ ∗ ∗ ∗ ∗ −Ō 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


,

Ξ̄11 = c1(A ⊗ M1)F + c1F (A ⊗ M1)T + Q̄R̄ + T̄ ,

Ξ̄12 = c2(B ⊗ M2)F, Ξ̄13 = c3(C ⊗ M3)F,

Ξ̄15 =X + R̄, Ξ̄16 = X,

Ξ̄33 =η2
M c3(C ⊗ M3)T R̄c3(C ⊗ M3),

Ξ̄44 = − Q̄ − R̄, Ξ̄55 = ΘŌ − 2R̄, Σ̄12 = ηM F̄T ,

Σ̄13 =
[
0 0 0 0 0 0 0 ηM W

]T
,

Σ̄14 =
[
0 0 0 0 λ̄1X λ̄1X 0 0

]T
,

Σ̄15 =
[
λ̄2F 0 0 0 0 0 0 0

]T
,

Φ11 =
[
(ϵ1 + ϵ2)XT 0N̄×7N̄ (ϵ1 + ϵ2)ηM XT 0 (ϵ1 + ϵ2)XT λ̄T

1 0
]T

,

Φ12 =
[
0 0 0 0 ϵ1µ2F 0N̄×7N̄

]T
,

Φ13 =
[
0 0 0 0 0 ϵ2µ2F 0N̄×6N̄

]T
,

F̄ =
[
c1(A ⊗ M1)F c2(B ⊗ M2)F 0 0 X X I δ̄

]
.

Furthermore, if the LMI is feasible, the desired controller gain matrix are given by Ki = XiY
−1

i , Oi =
F −1

i ŌiF
−1
i , i = 1, 2, ..., N .

proof 2 Based on the Schur complement lemma, Σ in (18) can be rewritten as the following form.

Σ =


Σ̂11 Σ̂12 Σ̂13 Σ14 Σ15

∗ −PR−1P 0 0 0
∗ ∗ −PR−1P 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 , (29)
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where

Σ̂11 =



Ξ̂11 Ξ12 Ξ13 0 Ξ15 Ξ16 P P δ̄
∗ −T 0 0 0 0 0 0
∗ ∗ Ξ33 0 0 0 0 0
∗ ∗ ∗ Ξ44 R 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ −O 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


,

Ξ̂11 = c1P (A ⊗ M1) + c1(A ⊗ M1)T P + Q − R + T,

Σ̂12 = ηM (PF)T ,

Σ̂13 =
[
0 0 0 0 0 0 0 ηM PW

]T
,

Σ15 =
[
λ̄2 0 0 0 0 0 0 0

]T
.

Since −PR−1P ≤ −2P + R [22], replacing −PR−1P by −2P + R, then we can get Σ ≤ Σ̂, where

Σ̂ =


Σ̂11 Σ̂12 Σ̂13 Σ14 Σ15

∗ −2P + R 0 0 0
∗ ∗ −2P + R 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 , (30)

The matric Σ̂ can be rewritten as

Σ̂ = Σ̂1 + ZT
1 △̂B + BT △̂Z1 + ZT

2 △̂B + BT △̂Z2, (31)

where

Σ̂1 = Σ̂|△̄=I , △̂ = diagN {△},

Z1 =
[
0 0 0 0 I 0N̄×7N̄

]
,

Z2 =
[
0 0 0 0 0 I 0N̄×6N̄

]
,

B =
[
KT P 0N̄×7N̄ ηM KT P 0 KT λ̄1 0

]
.

By using the Lemma 2, for any ϵ1, ϵ2 > 0, it can be obtained that

Σ̂ ≤ Σ̂1 + (ϵ1 + ϵ2)BT B + ϵ−1
1 ZT

1 △̂2Z1 + ϵ−1
2 ZT

2 △̂2Z2. (32)

Since △ = diagn{△j} , and |△j | ≤ µj, we can rewrite the inequality as

△̂2 ≤ µ2I, (33)

where µ = max{µj}, j = 1, 2, ..., n.
Then, the following inequality can be derived from the combination of (32) and (33),

Σ̂ ≤ Σ̂1 + (ϵ1 + ϵ2)BT B + ϵ−1
1 ZT

1 µ2Z1 + ϵ−1
2 ZT

2 µ2Z2. (34)

By using the Schur complement lemma, (34) is equivalent to the following matrix inequality

Σ̂ ≤


Σ̂1 (ϵ1 + ϵ2)BT ϵ1µ2ZT

1 ϵ2µ2ZT
2

∗ −(ϵ1 + ϵ2)I 0 0
∗ ∗ −ϵ1µ2I 0
∗ ∗ ∗ −ϵ2µ2I

 . (35)
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Letting P = diagN {Pi}, and defining P −1 = F, P −1
i = Fi, pre- and post-multiplying both sides of

(35) with Ω = diag{S, F, I, I} and ΩT respectively, where S = diag{F, F, F, F, F, F, I, I, F, F, I, I}, and
the new matrices can be defined as KF = X, FQF = Q̄, FRF = R̄, FTF = T̄ , FOF = Ō one can obtain

Π =


Σ̄1 Φ11 Φ12 Φ13
∗ −(ϵ1 + ϵ2)FF 0 0
∗ ∗ −ϵ1µ2I 0
∗ ∗ ∗ −ϵ2µ2I

 , (36)

Replacing −FF by −2F + I, we know that Π ≤ Ψ , which means Σ ≤ Π ≤ Ψ ≤ 0. This completes
the proof.

Remark 9 By solving the LMI, we can obtain that K = XF −1 and O = F −1OF −1, that is, Ki =
XiF

−1
i , Oi = F −1

i OiF
−1
i .

Remark 10 Since △̄ is a bounded matrix, it is not easy to deal with it when solving the LMI. So we use
Schur complement and Lemma 2 to deal with △̄ in this paper to make it more feasible to solve the LMI.

4 Numerical Examples

In this section, a numerical example is used to verify the validity of the criteria established in this paper.
A drive-response complex network (1) and (2) with N = 5 nodes are considered. Moveover, a coupled

network is given in Fig. 3.

Figure 3. A coupled network with 5 nodes.

The connection matrix is given to be

L =


0 1 0 0 1
1 0 0 0 1
1 0 0 1 0
0 1 1 0 0
0 1 1 1 0

 .
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Let D = diag[2, 2, 2, 2, 3] and the weight configuration matrices A = B = C = L − D.
For each node i (i = 1, 2, 3, 4, 5), we select the following nonlinear function v(ei(t))

v(ei(t)) =
[

ei1(t) sin(0.1ei1(t))
0.1ei1(t) sin(0.1ei2(t))

]
.

We can calculated the upper bound matrix of v is

λ2 =
[
0.1 0
0 0.1

]
.

The cyber-attack signal function is assumed as follows

ϕ(ui(t)) = 0.1ui(t) + tanh(0.1ui(t)),

and the upper bound matrix of ϕ(ui(t)) can be calculated as

λ1 =
[
0.2 0
0 0.2

]
.

Suppose that the coupling strengths c1 = c2 = c3 = 1 and the inner coupling matrices

M1 =
[
0.5 0
0 0.5

]
, M2 =

[
0.1 0
0 0.1

]
, M3 =

[
0.1 0
0 0.1

]
.

For given the threshold parameter

[σ1, σ2, . . . , σ5] = [2, 2, 2, 2, 2] × 10−1,

time delays ς = 0.1 and the time-varying delay in the network communication

[η1, η2, . . . , η5] = [5, 5, 5, 5, 5] × 10−2.

Let the sampling period

[h1, h2, . . . , h5] = [4, 3, 4, 3, 4] × 10−2.

We select the quantization density as ϱj = 1/3, and the expectation of the probabilities of cyber-attacks
o1 = o2 = o3 = 0.5, and ϵ1 = ϵ2 = 0.01.

Then, the LMI (27) can be solved and a set of the feasible solutions can be derived as follows:

P1 =
[
1.1195 0

0 1.1195

]
, X1 =

[
−1.4877 0

0 −1.4877

]
,

P2 =
[
1.0351 0

0 1.0351

]
, X2 =

[
−1.5773 0

0 −1.5773

]
,

P3 =
[
1.2188 0

0 1.2188

]
, X3 =

[
−1.3783 0

0 −1.3783

]
,

P4 =
[
0.7207 0

0 0.7207

]
, X4 =

[
−2.0043 0

0 −2.0043

]
,

P5 =
[
0.6496 0

0 0.6496

]
, X5 =

[
−2.7009 0

0 −2.7009

]
.
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Then the parameter of the desired controllers and the triggering matrices are given by

K1 =
[
−1.6655 0

0 −1.6655

]
, O1 =

[
5.8934 0

0 5.8934

]
,

K2 =
[
−1.6327 0

0 −1.6327

]
, O2 =

[
5.3681 0

0 5.3681

]
,

K3 =
[
−1.6798 0

0 −1.6798

]
, O3 =

[
6.4772 0

0 6.4772

]
,

K4 =
[
−1.4446 0

0 −1.4446

]
, O4 =

[
3.4552 0

0 3.4552

]
,

K5 =
[
−1.7544 0

0 −1.7544

]
, O5 =

[
3.4527 0

0 3.4527

]
.
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Figure 4. The trajectories of synchronization error ∥ei(t)∥ for i = 1, 2, . . . , 5 when the response system is uncon-
trolled.

Simulation results are shown in Figs. 4-8. From Fig. 4, we can find that Systems (1) and (2) can
not achieve synchronization, when the response system (2) is uncontrolled. for any node i = 1, 2, . . . , 5
without control. Then, Fig. 5 shows systems (1) and (2) can achieve synchronization when the response
system (2) is controlled with event-triggered scheme. Fig 6 shows the trajectories of control input with
quantization and Fig 7 shows the trajectories of control input with cyber-attacks. The release instants
and release intervals (RIRIs) are illustrated in Fig. 8.

5 Conclusion and Future Work

In this paper, the event-triggered asymptotic synchronization control problem of DRCNs with and quan-
tization and cyber-attacks has been studied. In order to reduce the communication load and save the net-
work bandwidth in NCSs, sample-data-based event-triggering mechanism have been investigated. Firstly,
a coupled error system with delays has been built to describe the performance of the event-triggered
mechanism with periodic sampling and the effect of the transmission delay on the NCSs. Then, some suf-
ficient conditions have been derived to guarantee the asymptotic synchronization and the event-triggered
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Figure 5. The trajectories of synchronization error ∥ei(t)∥ for i = 1, 2, . . . , 5 when the response system is con-
trolled.

Figure 6. The trajectories of control input ui(t) for i = 1, 2, . . . , 5 with quantization in (11).

synchronization controllers have been designed. Finally, a numerical simulation example has been given
to show the effectiveness of our event-triggering scheme. Recently, stochastic systems have become an
interesting research topic (see [44,45]), we will generalize our results to the corresponding stochastic
systems in the future.
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