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Abstract In this paper, the method of memory event triggering output feedback is used to study
the synchronization of complex dynamic network with bounded distributed delays when the target
node is known or unknown. A memory event triggering scheme is proposed to reduce the transmission
of data packets and shorten the transient process, and the network transmission delay is considered.
The data packet signals released in recent times are stored at the sensor side and the controller side,
which are used to generate event trigger function and design memory output feedback controller.
By using Lyapunov stability theory, a sufficient condition for exponentially ultimately bounded of
error dynamic system is given in the form of linear matrix inequalities (LMIs). Finally, an example
proves the validity and feasibility of the theoretical results.

Keywords: complex dynamic network, memory event-triggered scheme, output feedback synchro-
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1 Introduction

Complex dynamic network is composed of huge interconnected power units. In recent decades, it has
been widely concerned by people mainly because it exists in many natural systems or artificial systems.
Social networks[1], biological networks[2], power grids[3], airport networks[4] and World Wide Web[5],
which we often encounter but are not limited to, can be modeled and analyzed by complex dynamic
networks. In recent years, people have made in-depth research on the dynamic behaviors of complex
dynamic networks[6],[7],[8]. As one of the most studied, synchronization has made great progress. Including
stochastic synchronization[9], anticipation synchronization[10], outer synchronization[11], and exponential
synchronization[12], nonfragile exponential synchronization[13], globally exponential synchronization[7],
etc.

As we all know, due to the limitation of signal transmission speed on complex dynamic network links
and the problems of network hardware facilities, time delay is widespread. Time delay will reduce the
performance of the system and affect the stability of the controlled system [14]. Therefore, it is of great
significance to study the synchronization of complex dynamic networks with time delay, and has been
widely studied. For example, the finite time lag synchronization of complex networks with coupled delays
and master-slave complex networks with coupled time-varying delays is discussed respectively in[15],[16].
The finite-time hybrid projective synchronization of drive-response complex networks with distributed
delays is studied in[17].

In complex dynamic networks, it is more reasonable to design discrete-time controllers because of
the limited energy and computing resources of nodes. The traditional time-triggered sampling scheme
has a sufficiently small sampling period to avoid the worst case. However, the time-triggered sampling
scheme will produce many redundant sampling signals. Therefore, in order to avoid network-induced
problems such as transmission delay and packet loss caused by data transmission and network bandwidth,
event-triggered scheme is proposed and widely studied[18],[19],[20],[21],[22],[23]. In the event trigger
scheme, the event generator will release the data packet signal only when the predetermined event trigger
conditions are met. Generally speaking, the existing event-triggered schemes can be roughly divided into
three categories: continuous event-triggered schemes[18],[19], discrete event-triggered schemes[20],[21],[22]
and mixed event-triggered schemes[23]. In this paper, the discrete event-triggered scheme is studied,
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because it has the advantages of saving resources, reducing the computational burden of the controller
and avoiding Zeno phenomenon.

It is worth noting that in the current event-triggered schemes, whether the sampled signal is released
depends on two conditions. One is the threshold parameter, such as γ(t) and θ in the event trigger
conditions in[24],[25]. By adjusting the threshold, the conditions of event triggering can be changed to
make it easier or less easy to trigger. The other is the error norm between the current sampled signal
and the latest released signal[26],[27]. When the error norm is large, the current sampling signal can
be released. It should be pointed out that these factors are not enough to truly reflect the dynamics of
the system. For example, in the transient process, when the state is at peak or trough, the error norm
between the current sampled signal and the latest released signal is very small, but the values of these
two signals are much larger or smaller than those of other samples. In this case, we usually hope to
release the current sampling signal to shorten the control time and realize synchronization. Therefore, the
designed event trigger scheme should be related to several recently released data packet signals, that is,
the memory event trigger control scheme[28],[29].

In this paper, the design of the controller will adopt memory events trigger output feedback syn-
chronization control. Because in many control applications, complete state information is not available.
Therefore, it is very important to study the controller based on output feedback, and output feedback is
easier to implement than state feedback[30],[24]. In addition, the design of the controller will be related
to the data packet signals released in recent times, so as to obtain better control performance.

Synchronization of complex dynamic networks with bounded distributed delays is studied in this
paper when the target node is known or unknown. It is worth emphasizing that when the target node is
unknown, we will first design an estimator to obtain the estimated state of the target node. Then, based
on the estimated state, design the memory event triggers output feedback synchronous controller. At
present, there have been many researches on the design of estimator[31],[32]. Finally, we summarized
the main contributions as follows: (1) It is more practical to design memory event triggered feedback
controllers when the target node is known or unknown. (2) The memory event trigger scheme is adopted,
which reduces the conservative use of network bandwidth. Some newly released data packet signals are
stored in the storage areas and used to design controller to improve system performance. (3) Sufficient
conditions for synchronization of complex dynamic networks with bounded distributed delays are given.

The framework of this paper consists of six sections including this section. In the section 2, the model
building, memory event trigger controller design and some necessary lemmas and assumptions are given.
Synchronization analysis when the target node is known and unknown are given in the section 3 and the
section 4 respectively. The section 5 gives an example of effectiveness. The conclusion will be presented in
the section 6.

Notations: The notations used in this paper are quite standard. Rn and Rn×m are n dimension
Euclidean space and the set of n ×m dimension real matrix, respectively. In is the n × n dimension
identity matrix. AT represents the transpose of matrix A, ⊗ stands for the Kronecker product of matrices.
‖ · ‖ is the Euclidean norm, and |A| = trace{ATA}. diag{· · · } and col{· · · } represent diagonal matrix
and column respectively.

2 Problem Formulation and Preliminaries

2.1 Complex Dynamical Network Modeling

In the time-delay complex dynamical network under consideration, the information of the ith node is as
follows: 

ẋi(t) = f(xi(t)) +
∫ t

t−τ
ϕ(t− s)g(xi(s))ds +

N∑
j=1

łijΓxj(t) + ui(t),

yi(t) = Cixi(t), i = 1, 2, · · ·N,

(1)

where xi(t) = [xi1(t), xi2(t), · · ·xin(t)]T is the state vector of the ith node, yi(t) = [yi1(t), yi2(t), · · · yim(t)]T (1 ≤
m ≤ n) is the output information of the ith node. Ci ∈ Rm×n is a constant matrix. f(·) and g(·) are
non-linear vector-valued functions that satisfy certain conditions. τ is the bound of the distributed time
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delay, and ϕ(·) is the delay kernel function indicates the influence intensity of past history on the node
dynamics. L = [lij ]N×N is the coupling configuration matrix, when node i can receive information from
node j, lij > 0. Otherwise, lij = 0, and

lii = −
N∑

j=1,j 6=i
lij .

Γ = diag{γ1, γ2, · · · γn} > 0 is the internal coupling matrix, ui(t) is the control input.
In this paper, our aim is to design memory event trigger controllers, which can synchronize the complex

dynamical network with the target node when the target node is known or unknown.
Define w(t) ∈ Rn as the solution when the target node of complex dynamical network can be solved

and satisfies:

ẇ(t) =f(w(t)) +
∫ t

t−τ
ϕ(t− s)g(w(s))ds. (2)

Suppose the w(t) is unique, the synchronization error ei(t) = xi(t)−w(t) is defined, and the corresponding
error dynamical system are

ėi(t) = f̃(ei(t)) +
∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds +

N∑
j=1

łijΓej(t) + ui(t), i = 1, 2, · · ·N, (3)

where f̃(ei(t)) = f(xi(t))− f(w(t)), g̃(ei(t)) = g(xi(t))− g(w(t)).

2.2 Design of Memory Event Trigger Controller

In order to improve the system performance and make the complex dynamical network achieve synchro-
nization as soon as possible, we use the memory event trigger controller instead of the traditional event
trigger controller. Compared with the traditional event-triggered control, the memory event-triggered
control has two storage areas at the sensor end and the controller end, which are used to store the recently
released data packets. A detailed description of the memory event trigger control strategy flow can be
seen in Fig.1.

At the sensor end, the sensor samples the output information of node i (i = 1, 2, · · · , N) with h as the
sampling period, and writes it as yi(kh), (k = 1, 2, · · · ). Then, the memory event trigger function will
determine whether to release the data packet. If the release condition is met, let tik = k, store yi(tikh) in
the storage area and transfer it to the controller. For the controller end, yi(tikh) will also be stored in the
storage area, and the control input ui(t) will be generated by the stored information, and then ui(t) will
be transmitted to the actuator. The zero-order holder can keep the signal continuous between two release
moments.

For node i (i = 1, 2, · · · , N), the sampling sequence of the sensor is {0, h, 2h, · · · }, and the data
packets release moment sequence is {ti0h, ti1h, · · · }. According to the above description, we can get
{ti0, ti1 · · · } ⊂ {0, 1, 2, · · · } and 0 = ti0 < ti1 < ti2 · · · . Different from the traditional event trigger, the
memory event trigger uses not only the error between the current sampling moment and the last released
data packet, but also the information of the previous release packets in the storage area. Assuming the
last release instant is tikh, and the next release instant tik+1h satisfies the following condition:

tik+1h = tikh+ min
r∈N
{rh|

m∑
l=1

εlδ
T
i (tk−l+1)CTi Ciδi(tk−l+1) > ρ(t)ēTi (kh)CTi Ciēi(kh) + ki}, (4)

where δi(tk−l+1) = ei(tik−l+1h)− ei(tikh+ rh), m is the storage area capacity, and ei(tik−l+1h) = ei(ti0h)
if k− l+ 1 ≤ 0. εl is the weight parameter and satisfy

∑m
l=1 εl = 1. ρ(t) = ρ0 + ρ1e

−λ‖ei(tikh+rh)‖2 , ρ0, ρ1,
λ are given positive constants. It is easy to get ρ0 ≤ ρ(t) ≤ ρ0 + ρ1 , ρ. ēi(kh) = 1

m

∑m
l=1 ei(tk−l+1h), ki

is a known constant.
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Figure 1. Framework of CDNs with METS.

Remark 1. For the proposed memory event triggering strategy, the storage areas only store the data
packet signals released by the recently m times {yi(tikh), · · · , yi(tik−m+1h)}. It can be seen from the above
that when m = 1, the memory event trigger control will become the traditional event trigger control.

Remark 2. The parameter εl is the weight parameter in the release condition. Generally, the release
moment closer to the current moment has a larger weight, that is, the signals released at the latest moment
is more important than before. So the ε1 is larger than others and εi ≥ εi+1(i = 2, 3, · · ·m− 1). It is easy
to find that when ε1 = 1, εi = 0(i = 2, 3, · · ·m), the memory event trigger control will also become the
traditional event trigger control.

Remark 3. Visible from the ρ(t) = ρ0 + ρ1e
−λ‖ei(tikh+rh)‖2 , the value of the ρ(t) is related to the error

norm at the current sampling time λ‖ei(tikh+ rh)‖2. The larger the λ‖ei(tikh+ rh)‖2 is and the smaller
the ρ(t) is, the easier it is to trigger. More release date packets will be delivered to the controller, thus
improving the control performance. λ can control the rate of change, ρ1 can adjust the proportion of the
changed part in the equation ρ(t) = ρ0 + ρ1e

−λ‖ei(tikh+rh)‖2 , so as to achieve the best control performance.

To make the error dynamical system (3) exponentially ultimately bounded, the following memory
feedback controller is designed:

ui(t) =
m∑
l=1

εlK
i
lCiei(tik−l+1h), i = 1, 2, · · ·N, (5)

where Ki
l is the controller gain to be designed.

In practice, when the network bandwidth is limited, but more information needs to be transmitted,
or the transmission distance is long, the influence of network transmission delay should be considered.
Assume that the network transmission delay of data packet yi(tikh) is τ ik, τ ik ∈ [0, τ iM ], τ iM = maxk∈N{τ ik}.
For t ∈ [tikh+ τ ik, t

i
k+1h+ τ ik+1), the control input remains unchanged due to the existence of ZOH.

Defining τi(t) = t− tik+1h, t ∈ [tikh+ τ ik, t
i
k+1h+ τ ik+1), then

ui(t) =
m∑
l=1

εlK
i
lCi(δi(tk−l+1) + ei(t− τi(t))). (6)

92 Journal of Advances in Applied Mathematics, Vol. 6, No. 2, April 2021

JAAM Copyright © 2021 Isaac Scientific Publishing



Remark 4. It can be seen from (5) that the designed memory feedback controller is related to the data
packet signals released by node i for the last m times, which is the reason why the controller end needs
storage area. Similarly, the general feedback controller can also be regarded as a memory feedback controller
when m = ε1 = 1.

2.3 Assumption, Lemmas and Definition
Next, we will give some Assumption, Lemmas and Definition needed in this paper to complete the next
part of the proof.

Assumption 1. [33] For any x, z ∈ Rn, the nonlinear vector-valued functions f and g are continuous
and satisfy the following sector-bounded conditions:

[f(x)− f(z)− U1(x− z)]T [f(x)− f(z)− U2(x− z)] < 0,

[g(x)− g(z)− J1(x− z)]T [g(x)− g(z)− J2(x− z)] < 0,
in which U1, U2, J1, and J2 are real matrices of appropriate dimensions.

Definition 1. [34] (Exponentially Ultimately Bounded) The error dynamical system is exponentially
ultimately bounded if there exist constants M > 0, α > 0 and d > 0 such that

‖e(t)‖2 ≤Me−αt + d.

Lemma 1. [35],[36] For given matrix S > 0 , if there exists real matrix W such that[
S WT

W S

]
> 0,

then for function τ(t) ∈ (0, τM ], and ė(t) : (0, τM ] ∈ Rn, where τM is a positive constant, the following
inequality holds:

τM

∫ t

t−τM

ėT (θ)Sė(θ)dθ ≥

 e(t)
e(t− τ(t))
e(t− τM )

T  S ∗ ∗
W − S 2S − 2W ∗
−W W − S S

 e(t)
e(t− τ(t))
e(t− τM )


.

Lemma 2. [37] Let M be a positive semi-definite matrix, α(·) : (−∞, a]→ [0,+∞) be a scalar function
and F(·) : (−∞, a]→ Rn be a vector function. If the integrations concerned are well defined, the following
inequality holds:

(
∫ a

−∞
α(s)F(s)ds)TM(

∫ a

−∞
α(s)F(s)ds) ≤

∫ a

−∞
α(s)ds(

∫ a

−∞
α(s)FT (s)MF(s)ds).

Lemma 3. [38] (Schur Complement) For the given constant matrices Σ1, Σ2, and Σ3, where Σ1=ΣT
1

and Σ2 > 0, then
Σ1 +ΣT

3 Σ
−1
2 Σ3 < 0,

if and only if [
Σ1 ΣT

3
Σ3 −Σ2

]
< 0.

Lemma 4. [39] For any vector x, y ∈ Rn, and a positive definite matrix of appropriate dimension Q, the
following inequality holds:

2xT y ≤ xTQx+ yTQ−1y.

3 Stability Analysis of Target Node Known

In this section, the exponentially ultimately bounded of error dynamical system (3) when the target node
is known is given based on the proposed memory event triggering strategy (4). Detailed analysis is given
in Theorem 1, and the control gain Kl will be solved in Theorem 2. For presentation convenience, in the
following, we denote:
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e(t− τ(t)) = [eT1 (t− τ1(t)), · · · , eTN (t− τN (t))]T ,
F (e(t)) = [f̃T (e1(t)), f̃T (e2(t)), · · · , f̃T (eN (t))]T ,
G(e(t)) = [g̃T (e1(t)), g̃T (e2(t)), · · · , g̃T (eN (t))]T ,

δ(t) = [δT1 (t), δT2 (t), · · · , δTN (t)]T ,
e(t) = [eT1 (t), eT2 (t), · · · , eTN (t)]T ,
τM = max{τ1

M , τ
2
M , · · · , τNM , τ},

Kl = diag{K1
l ,K

2
l , · · · ,KN

l },

C = diag{C1, C2, · · · , CN},
P = diag{P1, P2, · · · , PN},
Q = diag{Q1, Q2, · · · , QN},
R = diag{R1, R2, · · · , RN},
S = diag{S1, S2, · · · , SN},
W = diag{W1,W2, · · · ,WN},
Φ = diag{Φ1, Φ2, · · · , ΦN},
Ψ = diag{Ψ1, Ψ2, · · · , ΨN}.

Theorem 1. Under Assumption 1, the error system (3) is exponentially ultimately bounded if there
exist block diagonal matrices P > 0, Q > 0, R > 0, S > 0, diagonal matrices Φ > 0, Ψ > 0 and
matrix W , such that the following LMIs (7) and (8) hold for given parameters τM > 0 α > 0, ρ > 0,
ki > 0(i = 1, 2, · · · , N), εl ∈ [0, 1](l = 1, 2, · · · ,m) and the controller gain Kl (l = 1, 2, · · · ,m). where

[
S WT

W S

]
> 0, (7)

and [
Ω HT

H −S−1

]
< 0, (8)

Ω =



Ω11 ∗ ∗ ∗ ∗ ∗ ∗
Ω21 Ω22 ∗ ∗ ∗ ∗ ∗

e−ατMW Ω32 Ω33 ∗ ∗ ∗ ∗
Ω41 0 0 Ω44 ∗ ∗ ∗
Ω51 0 0 0 Ω55 ∗ ∗
P 0 0 0 0 Ω66 ∗
Ω71 Ω72 0 0 0 0 Ω77


,

Ω11 =αP + P (L⊗ Γ ) + (L⊗ Γ )TP +R− e−ατMS − (Φ⊗ Ŭ1)− (Ψ ⊗ J̆1),

Ω21 =
m∑
l=1

εlC
TKT

l P − e−ατMW + e−ατMS, Ω22 = ρCTC − 2e−ατMS + 2e−ατMW,

Ω32 =− e−ατMW+e−ατMS, Ω33 = −e−ατMR−e−ατMS,

Ω41 =P+(Φ⊗ Ŭ2)T , Ω44 = −(Φ⊗ I), Ω51 = (Ψ ⊗ J̆2)T ,

Ω55 =ϕ̂τQ−(Ψ⊗I), Ω66 = − 1
ϕ̄τ
Q, Ω71 = col{ε1C

TKT
1 P, · · · , εmCTKT

mP},

Ω72 =col{ ρ
m
CTC,· · ·, ρ

m
CTC}, Ω77 = ρ

m2C
TC × Im + diag{−ε1C

TC, · · · ,−εmCTC},

Ŭ1 =(UT1 U2 + UT2 U1)/2, Ŭ2 = (UT1 + UT2 )/2, J̆1 = (JT1 J2 + JT2 J1)/2, J̆2 = (JT1 + JT2 )/2,

H =τM [(L⊗ Γ )
m∑
l=1

εlKlC 0 I 0 I ε1K1C · · · εmKmC].

(9)

Proof. We introduce the following Lyapunov functional candidate:

V (t) := V1(t) + V2(t) + V3(t) + V4(t), (10)
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where

V1(t) =
N∑
i=1

eTi (t)Piei(t),

V2(t) =
N∑
i=1

∫ τ

0
ϕ(θ)eαθ

∫ t

t−θ
eα(s−t)g̃T(ei(s))Qig̃(ei(s))dsdθ,

V3(t) =
N∑
i=1

∫ t

t−τM

eα(s−t)eTi (s)Riei(s)ds,

V4(t) =
N∑
i=1

τM

∫ t

t−τM

∫ t

θ

eα(s−t)ėTi (s)Siėi(s)dsdθ.

According to (3), the time derivative of V (t) is:

V̇ (t) := V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t), (11)

where

V̇1(t) = 2
N∑
i=1

eTi (t)Pi[f̃(ei(t)) +
∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds

+
N∑
j=1

łijΓej(t) +
m∑
l=1

εlK
i
lCi(δi(tk−l+1) + ei(t− τi(t)))],

V̇2(t) = − αV2(t)+
∫ τ

0
ϕ(θ)eαθdθ

N∑
i=1

g̃T (ei(t))Qig̃(ei(t))

−
N∑
i=1

∫ τ

0
ϕ(θ)eαθe−αθ g̃T (ei(t− θ))Qi · g̃(ei(t− θ))dθ,

V̇3(t)=−αV3(t)+
N∑
i=1

eTi (t)Riei(t)−e−ατM

N∑
i=1

eTi (t−τM ) ·Riei(t−τM ),

V̇4(t) = − αV4(t)−
N∑
i=1

τM

∫ t

t−τM

eα(s−t)ėTi (s)Siėi(s)ds+
N∑
i=1

τ2
M ė

T
i (t)Siėi(t).

(12)

It can be known from (4) that when the event trigger condition is not satisfied, one have:

ρ(t)ēTi (kh)CTi Ciēi(kh) + ki ≥
m∑
l=1

εlδ
T
i (tk−l+1)CTi Ciδi(tk−l+1). (13)

Let ϕ̂τ =
∫ τ

0 ϕ(θ)eαθdθ, ϕ̄τ =
∫ τ

0 ϕ(s)ds, by lemma 2, one can reach:

−
∫ τ

0
ϕ(θ)g̃T (ei(t− θ))Qig̃(ei(t− θ))dθ

=−
∫ t

t−τ
ϕ(t− s)g̃T (ei(s))Qig̃(ei(s))ds

≤− 1∫ t
t−τ ϕ(t− s)ds

[
∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds]T ·Qi

∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds

=− 1∫ τ
0 ϕ(s)ds

[
∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds]T ·Qi

∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds

=− 1
ϕ̄τ

[
∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds]T ·Qi

∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds.

(14)
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Furthermore, from Assumption 1, it can be obtained that:
N∑
i=1

Φi

[
ei(t)

f̃(ei(t))

]T [
Ŭ1 −Ŭ2
−ŬT2 I

] [
ei(t)

f̃(ei(t))

]
≤ 0,

N∑
i=1

Ψi

[
ei(t)
g̃(ei(t))

]T [
J̆1 −J̆2
−J̆T2 I

] [
ei(t)
g̃(ei(t))

]
≤ 0,

which is equivalent to

eT (t)(Φ⊗ Ŭ1)e(t) − 2eT (t)(Φ⊗ Ŭ2)F (e(t)) + FT (e(t))(Φ⊗ I)F (e(t)) ≤ 0,
eT (t)(Ψ ⊗ J̆1)e(t) − 2eT (t)(Ψ ⊗ J̆2)G(e(t)) +GT (e(t))(Ψ ⊗ I)G(e(t)) ≤ 0.

(15)

According to the above, the following can be obtained:

V̇ (t) + αV (t)

≤ αeT (t)Pe(t) + 2eT (t)P [F (e(t)) +
∫ t

t−τ
ϕ(t− s) ·G(e(s))ds+ (L⊗ Γ )e(t)

+
m∑
l=1

εlKlC(δ(tk−l+1) + e(t− τ(t)))]+ϕ̂τGT (e(t))QG(e(t))

− 1
ϕ̄τ

[
∫ t

t−τ
ϕ(t−s) ·G(e(s))ds]TQ

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ eT (t)Re(t)

− e−ατM eT (t−τM )Re(t−τM )−τM
∫ t

t−τM

eα(s−t)ėT (s) · Sė(s)ds+ τ2
M ė

T (t)Sė(t)

+ ρ(t)ēT (kh)CTCē(kh) +
N∑
i=1

ki −
m∑
l=1

εlδ
T (tk−l+1)CTCδ(tk−l+1)

− eT (t)(Φ⊗ Ŭ1)e(t) + 2eT (t)(Φ⊗ Ŭ2)F (e(t))− FT (e(t))(Φ⊗ I)F (e(t))
− eT (t)(Ψ ⊗ J̆1)e(t) + 2eT (t)(Ψ ⊗ J̆2)G(e(t))−GT (e(t))(Ψ ⊗ I)G(e(t)).

(16)

In the above formula, by using lemma 1, the following can be obtained:

−τM
∫ t

t−τM

eα(s−t)ėT (s)Sė(s)ds ≤ − τMe−ατM ·
∫ t

t−τM

ėT (s)Sė(s)ds

≤ − e−ατM ·

 e(t)
e(t−τ(t))
e(t−τM )

T  S ∗ ∗
W−S2S−2W ∗
−W W−S S

  e(t)
e(t−τ(t))
e(t−τM )

 . (17)

Let
ξ(t) := [eT (t) eT (t− τ(t)) eT (t− τM ) FT (e(t)) GT (e(t))∫ t

t−τ
ϕ(t− s)GT (e(s))ds) δT (tk) · · · δT (tk−m+1)]T .

The following equation holds:
τ2
M ė

T (t)Sė(t) = ξT (t)HTSHξ(t). (18)
Therefore, by the definition of ξ(t) and (11)-(18), there are

V̇ (t) + αV (t) ≤ ξT (t)Ωξ(t) + ξT (t)HTSHξ(t) +
N∑
i=1

ki. (19)

Combined inequality (8) with Schur Complement lemma, gives

Ω +HTSH < 0.
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So there is

V̇ (t) + αV (t) ≤
N∑
i=1

ki. (20)

According to the comparison principle, we can reach that:

V (t) ≤ V (0)e−αt +
N∑
i=1

ki

∫ t

0
e−α(t−s)ds. (21)

It is easy to find V (t) ≥ λmin(P )‖e(t)‖2, so we have:

‖e(t)‖2 ≤ V (0)
λmin(P )e

−αt +
∑N
i=1 ki

αλmin(P ) (1− e−αt) ≤ V (0)
λmin(P )e

−αt +
∑N
i=1 ki

αλmin(P ) . (22)

At this point, the proof is complete.

Theorem 2. Under Assumption 1, the error system (3) is exponentially ultimately bounded if there
exist block diagonal matrices P > 0, Q > 0, R > 0, S > 0, Xl, diagonal matrices Φ > 0, Ψ > 0 and
matrix W , such that the following LMIs (23) and (24) hold for given parameter τM > 0, α > 0, ρ > 0,
ki > 0(i = 1, 2, · · · , N), εl ∈ [0, 1](l = 1, 2, · · · ,m). where[

S WT

W S

]
> 0, (23)

and [
Ω̄ HTP
PH −2P + S

]
< 0, (24)

Ω̄ =



Ω11 ∗ ∗ ∗ ∗ ∗ ∗
Ω̄21 Ω22 ∗ ∗ ∗ ∗ ∗

e−ατMWΩ32Ω33 ∗ ∗ ∗ ∗
Ω41 0 0 Ω44 ∗ ∗ ∗
Ω51 0 0 0 Ω55 ∗ ∗
P 0 0 0 0 Ω66 ∗
Ω̄71 Ω72 0 0 0 0 Ω77


,

Ω̄21 =
m∑
l=1

εlC
TXT

l − e−ατMW + e−ατMS,

Ω̄71 = col{ε1C
TXT

1 , · · · , εmCTXT
m}.

In addition, if LMIs (23) and (24) are solvable, the controller gain matrices are given as

Kl = P−1Xl, l = 1, 2, · · · ,m.

Proof. For any constant `, we can get −PS−1P ≤ −2`P + `2S, then LMI (24) can deduce[
Ω̄ HTP
PH −PS−1P

]
< 0. (25)

Noting that Xl = PKl, per-multiplying and post-multiplying (25) by diag{I, I, I, I, I, I, I, P−1}, the
LMI (8) can be obtained. The rest of the proof is the same as Theorem 1.

4 Stability Analysis of Target Node Unknown

In the last section, we studied the controller design problem of synchronizing complex dynamic networks
by using the memory event triggering strategy when the target node is known. And in this section, we
will continue to study the controller design to synchronizing the complex dynamical network when the
state information of the target node is unavailable. First, we will use the output information of the target
node to estimate the state information, and then design a memory event trigger controller based on the
state estimation to achieve synchronization.
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4.1 The Design of Estimator

Assume that the target node information is as follows:ẇ(t) = f(w(t)) +
∫ t

t−τ
ϕ(t− s)g(w(s))ds,

z(t) = Dw(t),
(26)

where z(t) is the measurement output of the target node, D ∈ Rm×n is a known constant matrix.
In the designed estimator, the sensor still uses the periodic sampling method. Assume that the

sampling period is h1, and the memory event trigger function will determine whether the sampled signal
is transmitted to the estimator. The memory event trigger release sequence of the target node w is
0 = T0h1 < T1h1 < T2h1 < · · · , and it is determined by:

Tk+1h1 =Tkh1 + min
r∈N
{rh1|~(ϑ(Tk−l+1), ρ̂(t), k̂) > 0}, (27)

the memory event trigger function ~(ϑ(Tk−l+1), ρ̂(t), k̂) will be given later, and it is related to the vector
ϑ(Tk−l+1), the given threshold constants ρ̂(t) > 0, k̂ > 0.

Assume that the network transmission delay is ηk, where ηk ∈ [0, ηM ], ηM = maxk∈N{ηk, τ}. For
t ∈ [Tkh1 + ηk, Tk+1h1 + ηk+1), define η(t) = t− Tk+1h1, and the estimate of the target node is given

˙̂w(t) = f(ŵ(t)) +
∫ t

t−τ
ϕ(t− s)g(ŵ(s))ds+

m∑
l=1

ε̂lElD(w(Tk−l+1h1)− ŵ(Tk−l+1h1)), (28)

where ŵ(t) is the estimate of the state vector w(t) and El ∈ Rn×m is the estimator gain matrix, ε̂l is the
weight parameter.

The estimation error is defined as υ(t) = w(t)− ŵ(t), and the estimation error dynamics are as follows:

υ̇(t) = f̆(υ(t)) +
∫ t

t−τ
ϕ(t− s)ğ(υ(s))ds−

m∑
l=1

ε̂lElDυ(Tk−l+1h1), (29)

where f̆(υ(t)) = f(w(t))− f(ŵ(t)), ğ(υ(s)) = g(w(s))− g(ŵ(s)).
We define the event trigger function:

~(ϑ(Tk−l+1), ρ̂(t), k̂) :=
m∑
l=1

ε̂lϑ
T (Tk−l+1)DTDϑ(Tk−l+1)− ρ̂(t)ῡT (kh1)DTDῡ(kh1)− k̂, (30)

where ϑ(Tk−l+1) = υ(Tk−l+1h1) − υ(Tkh1 + rh1) and ῡ(kh1) = 1
m

∑m
l=1 υ(Tk−l+1h1), ρ̂(t) = ρ̂0 +

ρ̂1e
−λ̂‖υ(Tkh1+rh1)‖2 , ρ̂ = ρ̂0 + ρ̂1.
For t ∈ [Tkh1 + ηk, Tk+1h1 + ηk+1), one can get:

ρ̂(t)ῡT (kh1)DTDῡ(kh1) + k̂ ≥
m∑
l=1

ε̂lϑ
T (Tk−l+1)DTDϑ(Tk−l+1). (31)

Remark 5. For the designed estimator, the memory event trigger strategy is adopted here, which will
achieve synchronization faster, and the obtained state estimation information will be closer to the real
state information. As for the effectiveness of the estimator, that is, the estimation error dynamics are
exponentially ultimately bounded, we will prove it by the following theorems.

Theorem 3. Under assumption 1, the estimation error system (29) is exponentially ultimately bounded
if there exist matrices P > 0, Q > 0, R > 0, S > 0, real matrix W and two scalar constants φ > 0, ψ > 0,
such that the following LMIs (32) and (33) hold for given parameters ηM > 0, α1 > 0, ρ̂ > 0, k̂ > 0,
ε̂l ∈ [0, 1](l = 1, 2, · · · ,m) and the estimator gain El. where[

S WT

W S

]
> 0, (32)
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and [
∆ LT
L −S−1

]
< 0, (33)

∆=



∆11 ∗ ∗ ∗ ∗ ∗ ∗
∆21 ∆22 ∗ ∗ ∗ ∗ ∗

e−α1ηMW ∆32 ∆33 ∗ ∗ ∗ ∗
∆41 0 0 −φI ∗ ∗ ∗
ψJ̆T2 0 0 0 ∆55 ∗ ∗
P 0 0 0 0 ∆66 ∗
∆71 ∆72 0 0 0 0 ∆77


,

∆11 =α1P +R− e−α1ηMS − φŬ1 − ψJ̆1, ∆21 = −
m∑
l=1

ε̂lD
TETl P − e−α1ηMW + e−α1ηMS,

∆41 =P + φŬT2 , ∆22 = ρ̂DTD−2e−α1ηMS+2e−α1ηMW,

∆71 =col{−ε̂1D
TET1 P, · · · ,−ε̂mDTETmP}, ∆32 = −e−α1ηMW + e−α1ηMS,

∆72 =col{ ρ̂
m
DTD, · · · , ρ̂

m
DTD} ∆33 = −e−α1ηMR− e−α1ηMS, ∆55 = ¯̂ϕτQ− ψI,

∆66 =− 1
ϕ̄τ
Q, ¯̂ϕτ =

∫ τ

0
ϕ(θ)eα1θdθ, ∆77 = ρ̂

m2D
TD × Im + diag{−ε1D

TD, · · · ,−εmDTD},

L =ηM [0 −
m∑
l=1

ε̂lElD 0 I 0 I − ε̂1E1D · · · − ε̂mEmD].

(34)

Proof. The following Lyapunov candidate functions are given:

V(t) = υT (t)Pυ(t) +
∫ τ

0
ϕ(θ)eα1θ

∫ t

t−θ
eα1(s−t)ğT (υ(s))Qğ(υ(s))dsdθ

+
∫ t

t−ηM

eα1(s−t)υT (s)Rυ(s)ds+ ηM

∫ t

t−ηM

∫ t

θ

eα1(s−t)υ̇T (s)Sυ̇(s)dsdθ.
(35)

Calculating the time derivative of V(t) along the trajectory of system (29), and then combine
assumption 1, lemma 1,2 to get:

V̇(t) + α1V(t) ≤α1υ
T (t)Pυ(t) + 2υT (t)P[f̆(υ(t))

+
∫ t

t−τ
ϕ(t− s)ğ(υ(s))ds−

m∑
l=1

ε̂lElD(ϑ(Tk−l+1) + υ(t− η(t)))]

+ ¯̂ϕτ ğT (υ(t))Qğ(υ(t))− 1
ϕ̄τ
· [
∫ t

t−τ
ϕ(t−s)ğ(υ(s))ds]TQ[

∫ t

t−τ
ϕ(t− s)ğ(υ(s))ds]

+ υT (t)Rυ(t)− e−α1ηMυT (t− ηM )Rυ(t− ηM ) + η2
M υ̇

T (t)Sυ̇(t)

− e−α1ηM ·

 υ(t)
υ(t−η(t))
υ(t−ηM )

T S ∗ ∗
W−S2S−2W∗
−W W−S S

 υ(t)
υ(t−η(t))
υ(t−ηM )


+ ρ̂(t)ῡT (kh1)DTDῡ(kh1) + k̂ −

m∑
l=1

ε̂lϑ
T (Tk−l+1) ·DTDϑ(Tk−l+1)

− φυT (t)Ŭ1υ(t)+2φυT (t)Ŭ2f̆(υ(t))− φf̆T (υ(t))If̆(υ(t))− ψυT (t)J̆1υ(t)
+ 2ψυT (t)J̆2ğ(υ(t))− ψğT (υ(t))Iğ(υ(t)).

(36)

Define vectors χ as follows:

χ(t) :=[υT (t) υT (t−η(t)) υT (t−ηM ) f̆T (υ(t)) ğT (υ(t))∫ t

t−τ
ϕ(t− s)ğ(υ(s))ds ϑT (Tk) · · ·ϑT (Tk−l+1)]T .
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Then (36) can be written as

V̇(t) + α1V(t) ≤ χT (t)∆χ(t) + χT (t)LTSLχ(t) + k̂. (37)

Using lemma 3 to the inequality (33), we can get ∆+ LTSL < 0. Therefore, we have

V̇(t) + α1V(t) ≤ k̂. (38)

According to the comparison principle:

V(t) ≤ V(0)e−α1t + k̂

∫ t

0
e−α1(t−s)ds, (39)

and V(t) ≥ λmin(P)‖υ(t)‖2, there are

‖υ(t)‖2 ≤ V(0)
λmin(P)e

−α1t + k̂

α1λmin(P) .
(40)

end of proof.

Theorem 4. Under assumption 1, the estimation error system (29) is exponentially ultimately bounded
if there exist matrices P > 0, Q > 0, R > 0, S > 0, Yl, real matrix W and two scalar constants φ > 0,
ψ > 0, such that the following LMIs (41) and (42) hold for given parameters ηM > 0, α1 > 0, ρ̂ > 0,
k̂ > 0, ε̂l ∈ [0, 1](l = 1, 2, · · · ,m). where [

S WT

W S

]
> 0, (41)

and [
∆̄ LTP
PL −2P + S

]
< 0, (42)

∆̄ =



∆11 ∗ ∗ ∗ ∗ ∗ ∗
∆̄21 ∆22 ∗ ∗ ∗ ∗ ∗

e−α1ηMW∆32∆33 ∗ ∗ ∗ ∗
∆41 0 0 −φI ∗ ∗ ∗
ψJ̆T2 0 0 0 ∆55 ∗ ∗
P 0 0 0 0 ∆66 ∗
∆̄71 ∆72 0 0 0 0 ∆77


,

∆̄21 = −ε̂lDTY Tl − e−α1ηMW + e−α1ηMS,
∆̄71 = col{−ε̂1D

TY T1 , · · · ,−ε̂mDTY Tm}.

Obviously, if LMIs (41) and (42) are solvable, the designed estimator gain matrix is given by

El = P−1Yl, l = 1, 2, · · · ,m.

4.2 Controller Design and Synchronic Analysis

Next, we will design a controller ũi(t) to make the complex dynamic network achieve synchronization
according to the estimated state of the target node w.

The synchronization error dynamical system can be described as:

ėi(t) = f̃(ei(t)) +
∫ t

t−τ
ϕ(t− s)g̃(ei(s))ds+

N∑
j=1

lijΓej(t) + ũi(t), i = 1, 2, · · · , N. (43)
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Here, the controller is still designed by the strategy of periodic sampling and memory event triggering.
For the node i, it is assumed that the sampling period of the sensor is h2. The event trigger sequence is
0 = ti0h2 < ti1h2 < ti2h2 < · · · , and the release instant tik+1h2 is defined as follows:

tik+1h2 = tikh2+min
r∈N
{rh2|

m∑
l=1

ε̃lδ̂
T
i (tk−l+1)CTi Ciδ̂i(tk−l+1)) > ρ̃(t)¯̂eTi ((kh2)CTi Ci ¯̂ei(kh2) + k̃i}, (44)

where ε̃l is the weight parameter. êi(t) = xi(t) − ŵ(t), δ̂i(tk−l+1) = êi(tik−l+1h2) − êi(tikh2 + rh2),
¯̂ei(kh2) = 1

m

∑m
l=1 êi(tik−l+1h2), ρ̃(t) = ρ̃0 + ρ̃1e

−λ̃‖e(tikh2+rh2)‖2 , ρ̃ = ρ̃0 + ρ̃1. k̃i is a known constant.
Design the controller as follows:

ũi(t) =
m∑
l=1

ε̃lK̃
i
lCiêi(tik−l+1h2), (45)

where K̃i
l is the controller gain matrix to be designed. Consider the network transmission delay ζik, where

ζik ∈ [0, ζiM ], ζiM = maxk∈N{ζik}. Let ζi(t) = t− tik+1h2, t ∈ [tikh2 + ζik, t
i
k+1h2 + ζik+1).

The following symbols are given:

e(t− ζ(t)) =[eT1 (t− ζ1(t)), · · · , eTN (t− ζN (t))]T ,
δ̂(t) =[δ̂T1 (t), δ̂T2 (t), · · · , δ̂TN (t)]T ,
K̃l =diag{K̃1

l , K̃
2
l , · · · , K̃N

l },
e(tkh2) =[eT1 (t1kh2), eT2 (t2kh2), · · · , eTN (tNk h2)]T ,
υ(tkh2) =[υT (t1kh2), υT (t2kh2), · · · , υT (tNk h2)]T ,

ζM = max{ζ1
M , ζ

2
M , · · · , ζNM , τ},

P̃ =diag{P̃1, P̃2, · · · , P̃N},
Q̃ =diag{Q̃1, Q̃2, · · · , Q̃N},
R̃ =diag{R̃1, R̃2, · · · , R̃N},
S̃ =diag{S̃1, S̃2, · · · , S̃N},
W̃ =diag{W̃1, W̃2, · · · , W̃N},
Φ̃ =diag{Φ̃1, Φ̃2, · · · , Φ̃N},
Ψ̃ =diag{Ψ̃1, Ψ̃2, · · · , Ψ̃N}.

Theorem 5. Under assumption 1, the error system (43) is exponentially ultimately bounded if there exist
block diagonal matrices P̃ > 0, Q̃ > 0, R̃ > 0, S̃ > 0, diagonal matrices Φ̃ > 0, Ψ̃ > 0 and real matrix
W̃ , such that the following LMIs (46) and (47) hold for given parameters q1 > 0, q2 > 0, q3 > 0, q4 > 0,
q5 > 0, q6 > 0, ζM > 0, α2 > 0, ρ̃ > 0, k̃i > 0(i = 1, 2, · · · , N), β ∈ (0, 1), ε̃l ∈ [0, 1](1, 2, · · · ,m) and the
controller gain K̃l. where [

S̃ W̃T

W̃ S̃

]
> 0, (46)

and Π H̃T H̆T

∗ −(1 + 1
q6

)−1S̃−1 0
∗ ∗ Π̆

 < 0, (47)

Π =



Π11 ∗ ∗ ∗ ∗ ∗ ∗
Π21 Π22 ∗ ∗ ∗ ∗ ∗

e−α2ζM W̃ Π32 Π33 ∗ ∗ ∗ ∗
0 0 0 Π44 ∗ ∗ ∗
Π51 0 0 0 Π55 ∗ ∗

(Ψ̃ ⊗ J̆2)T 0 0 0 0 Π66 ∗
P̃ 0 0 0 0 0 Π77


, (48)
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Π11 =α2P̃ + P̃ (L⊗ Γ ) + (L⊗ Γ )T P̃ + R̃− e−α2ζM S̃ − (Φ̃⊗ Ŭ1)− (Ψ̃ ⊗ J̆1),

Π21 =− e−α2ζM W̃ + e−α2ζM S̃ + (1− β)
m∑
l=1

ε̃lC
T K̃T

l P̃ ,

Π51 =P̃ + (Φ̃⊗ Ŭ2)T , Π22 = −2e−α2ζM S̃ + 2e−α2ζM W̃ ,

Π32 =− e−α2ζM W̃ + e−α2ζM S̃, Π33 = −e−α2ζM R̃− e−α2ζM S̃, ˜̂ϕτ =
∫ τ

0
ϕ(θ)eα2θdθ,

Π44 =diag{βε̃1C
T (q1 ⊗ I)C, · · · , βε̃mCT (q1 ⊗ I)C}+ (1− β)q3ρ̃

m2 C
T (( 1

q4
+ 1)⊗ I)C × Im,

Π55 =− (Φ̃⊗ I), Π66 = ϕ̂τ Q̃− (Ψ̃ ⊗ I) Π77 = − 1
ϕ̄τ
Q̃,

H̃ =ζM [(L⊗ Γ ) 0 0 ε̃1K̃1C · · · ε̃mK̃mC I 0 I],

H̆ =[
m∑
l=1

ε̃lK̃
T
l P̃ 0 0 0 0 0 0],

Π̆ =− β−1((q1 + q2)⊗ I)− (1− β)−1((q3 + q5)⊗ I).

Proof. Consider the following Lyapunov function candidate:

Ṽ (t) = Ṽ1(t) + Ṽ2(t) + Ṽ3(t) + Ṽ4(t),

Ṽ1(t) =
N∑
i=1

eTi (t)P̃iei(t),

Ṽ2(t) =
N∑
i=1

∫ τ

0
ϕ(θ)eα2θ

∫ t

t−θ
eα2(s−t)g̃T(ei(s))Q̃ig̃(ei(s))dsdθ,

Ṽ3(t) =
N∑
i=1

∫ t

t−ζM

eα2(s−t)eTi (s)R̃iei(s)ds,

Ṽ4(t) =
N∑
i=1

ζM

∫ t

t−ζM

∫ t

θ

eα2(s−t)ėTi (s)S̃iėi(s)dsdθ.

(49)

Combining Assumption 1, we can get the time derivative of Ṽ (t)

˙̃V (t) + α2Ṽ (t) ≤α2e
T (t)P̃ e(t) + 2eT (t)P̃ [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t)]

+ 2eT (t)P̃
m∑
l=1

ε̃lK̃lCê(tk−l+1h2) + ˜̂ϕτGT (e(t))Q̃ ·G(e(t))

− 1
ϕ̄τ

[
∫ t

t−τ
ϕ(t− s)G(e(s))ds]Q̃ · [

∫ t

t−τ
ϕ(t− s)G(e(s))ds] + eT (t)R̃e(t)

− e−α2ζM · eT (t− ζM )R̃e(t− ζM )− ζM
∫ t

t−ζM

eα2(s−t)ėT (s) · S̃ė(s)ds+ ζ2
M ė

T (t)S̃ė(t)

− eT (t)(Φ̃⊗ Ŭ1)e(t) + 2eT (t)(Φ̃⊗ Ŭ2)F (e(t))− FT (e(t))(Φ̃⊗ I)F (e(t))
− eT (t)(Ψ̃ ⊗ J̆1)e(t) + 2eT (t)(Ψ̃ ⊗ J̆2)G(e(t))−GT (e(t))(Ψ̃ ⊗ I)G(e(t)),

(50)
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where

2eT (t)P̃
m∑
l=1

ε̃lK̃lCê(tk−l+1h2)

=2βeT (t)P̃
m∑
l=1

ε̃lK̃lC(e(tk−l+1h2) + υ(tk−l+1h2)) + 2(1− β)eT (t)P̃
m∑
l=1

ε̃lK̃lC(δ̂(tk−l+1) + ê(t− ζ(t)))

=2βeT (t)P̃
m∑
l=1

ε̃lK̃lCe(tk−l+1h2) + 2βeT (t)P̃
m∑
l=1

ε̃lK̃lC · υ(tk−l+1h2)

+ 2(1− β)eT (t)P̃
m∑
l=1

ε̃lK̃lCδ̂(tk−l+1) + 2(1− β)eT (t)P̃
m∑
l=1

ε̃lK̃lCê(t− ζ(t))

≤βeT (t)P̃
m∑
l=1

ε̃lK̃l((q1 + q2)⊗ I)−1K̃T
l P̃ e(t) + β

m∑
l=1

ε̃le
T (tk−l+1h2)CT (q1 ⊗ I)Ce(tk−l+1h2)

+ β

m∑
l=1

ε̃lυ
T (tk−l+1h2)CT (q2 ⊗ I)Cυ(tk−l+1h2) + (1− β)eT (t)P̃

m∑
l=1

ε̃lK̃l(q3 ⊗ I)−1K̃T
l P̃ e(t)

+ (1− β)q3

m∑
l=1

ε̃lδ̂
T (tk−l+1)CTCδ̂(tk−l+1) + 2(1− β)eT (t)P̃

m∑
l=1

ε̃lK̃lC(e(t− ζ(t)) + υ(t− ζ(t))).

(51)
The above inequality can be obtained according to lemma 4.

In the above inequality, according to (44), when the event trigger condition is not satisfied, there are
m∑
l=1

ε̃lδ̂
T (tk−l+1)CTCδ̂(tk−l+1)

≤ ρ̃

m

m∑
l=1

êT (tk−l+1h2)CTC 1
m

m∑
l=1

ê(tk−l+1h2) +
N∑
i=1

k̃i

= ρ̃

m

m∑
l=1

(eT (tk−l+1h2) + υT (tk−l+1h2))CTC 1
m

m∑
l=1
·(e(tk−l+1h2) + υ(tk−l+1h2)) +

N∑
i=1

k̃i

= ρ̃

m

m∑
l=1

eT (tk−l+1h2)CTC 1
m

m∑
l=1

e(tk−l+1h2) + 2ρ̃
m

m∑
l=1

eT (tk−l+1h2)CTC 1
m

m∑
l=1

υT (tk−l+1h2)

+ ρ̃

m

m∑
l=1

υT (tk−l+1h2)CTC 1
m

m∑
l=1

υT (tk−l+1h2)+
N∑
i=1

k̃i

≤ ρ̃

m

m∑
l=1

eT (tk−l+1h2)CT (( 1
q4

+ 1)⊗ I)C 1
m
·
m∑
l=1

e(tk−l+1h2)

+ ρ̃

m

m∑
l=1

υT (tk−l+1h2)CT · ((q4 + 1)⊗ I)C
m∑
l=1

υ(tk−l+1h2) +
N∑
i=1

k̃i.

Therefore, we can reach that

(1− β)q3

m∑
l=1

ε̃lδ̂
T (tk−l+1)CTCδ̂(tk−l+1)

≤(1− β)q3[ ρ̃
m

m∑
l=1

eT (tk−l+1h2)CT (( 1
q4

+ 1)⊗ I)C · 1
m

m∑
l=1

e(tk−l+1h2)

+ ρ̃

m

m∑
l=1

υT (tk−l+1h2)CT · ((q4 + 1)⊗ I)C 1
m

m∑
l=1

υ(tk−l+1h2) +
N∑
i=1

k̃i].

(52)
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Similarly, we can get

2(1− β)eT (t)P̃
m∑
l=1

ε̃lK̃lC(e(t− ζ(t)) + υ(t− ζ(t)))

≤2(1− β)eT (t)P̃
m∑
l=1

ε̃lK̃lCe(t− ζ(t)) + (1− β)eT (t)P̃
m∑
l=1

ε̃lK̃l(q5 ⊗ I)−1K̃T
l P̃ e(t)

+ (1− β)υT (t− ζ(t))C(q5 ⊗ I)CTυ(t− ζ(t)).

(53)

For ζ2
M ė

T (t)S̃ė(t), it can be written as follows

ζ2
M ė

T (t)S̃ė(t)

= ζ2
M [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)

+
m∑
l=1

ε̃lK̃lCυ(tk−l+1h2)]T S̃ · [F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds

+ (L⊗ Γ )e(t) +
m∑
l=1

ε̃lK̃lCe(tk−l+1h2) +
m∑
l=1

ε̃lK̃lCυ(tk−l+1h2)]

= ζ2
M [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]T

· S̃[F (e(t)) +
∫ t

t−τ
ϕ(t− s) ·G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]

·+2ζ2
M [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]T

· S̃
m∑
l=1

ε̃lK̃lCυ(tk−l+1h2) + ζ2
M

m∑
l=1

ε̃lυ
T (tk−l+1h2)CT K̃T

l S̃K̃lC

m∑
l=1

ε̃lυ(tk−l+1h2).

The block diagonal matrix S̃ can be written as S̃ = MTM , which is decomposed by Cholesky
decomposition method, where M is a lower triangular real matrix with positive diagonal elements. Then
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the above formula can be written as

2ζ2
M [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]T S̃
m∑
l=1

ε̃lK̃lCυ(tk−l+1h2)

= 2ζ2
M [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]TMTM

m∑
l=1

ε̃lK̃lCυ(tk−l+1h2)

≤ ζ2
M

1
q6

[F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]TMT

·M [F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds+(L⊗Γ )e(t)+

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]

+ζ2
Mq6 ·

m∑
l=1

ε̃lυ
T (tk−l+1h2)CT K̃T

l M
TMK̃lC

m∑
l=1

ε̃lυ(tk−l+1h2)

= ζ2
M

1
q6

[F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]T

· S̃[F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds+(L⊗Γ )e(t)+

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]

+ζ2
Mq6 ·

m∑
l=1

ε̃lυ
T (tk−l+1h2)CT K̃T

l S̃K̃lC

m∑
l=1

ε̃lυ(tk−l+1h2).

therefore

ζ2
M ė

T (t)S̃ė(t)

=ζ2
M (1 + 1

q6
)[F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]T

· S̃[F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lC · e(tk−l+1h2)]

+ ζ2
M (1 + q6)

m∑
l=1

ε̃lυ(tk−l+1h2)CT K̃T
l · S̃K̃lC

m∑
l=1

ε̃lυ(tk−l+1h2).

(54)
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Then, the equality (50), combined with (51)-(54), and Lemma 1, the following can be obtained:

˙̃V (t) + α2Ṽ (t) ≤ α2e
T (t)P̃ e(t) + 2eT (t)P̃ [F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t)]

+ ˜̂ϕτ ·GT (e(t))Q̃G(e(t))− 1
ϕ̄τ

[
∫ t

t−τ
ϕ(t− s)G(e(s))ds]Q̃ · [

∫ t

t−τ
ϕ(t− s)G(e(s))ds] + eT (t)R̃e(t)

− e−α2ζM · eT (t− ζM )R̃e(t− ζM )− e−α2ζM·

 e(t)
e(t−ζ(t))
e(t−ζM )

T S̃ ∗ ∗
W̃−S̃2S̃−2W̃∗
−W̃ W̃−S̃ S̃

 e(t)
e(t−ζ(t))
e(t−ζM )


− eT (t)(Φ̃⊗ Ŭ1)e(t) + 2eT (t)(Φ̃⊗ Ŭ2)F (e(t))− FT (e(t))(Φ̃⊗ I)F (e(t))− eT (t)(Ψ̃ ⊗ J̆1)e(t)

+ 2eT (t)(Ψ̃ ⊗ J̆2)G(e(t))−GT (e(t))(Ψ̃ ⊗ I)G(e(t)) + βeT (t)P̃
m∑
l=1

ε̃lK̃l((q1 + q2)⊗ I)−1K̃T
l P̃ e(t)

+ β

m∑
l=1

ε̃le
T (tk−l+1h2)CT (q1 ⊗ I)Ce(tk−l+1h2) + β

m∑
l=1

ε̃lυ
T (tk−l+1h2)CT (q2 ⊗ I)Cυ(tk−l+1h2)

+ (1− β)eT (t)P̃
m∑
l=1

ε̃lK̃l((q3 + q5)⊗ I)−1K̃T
l P̃ e(t)

+ (1− β)q3[ ρ̃
m

m∑
l=1

eT (tk−l+1h2)CT (( 1
q4

+1)⊗I)C · 1
m

m∑
l=1

e(tk−l+1h2)

+ ρ̃

m

m∑
l=1

υT (tk−l+1h2)CT ((q4 + 1)⊗ I)C 1
m

m∑
l=1

υ(tk−l+1h2)

+
N∑
i=1

k̃i] + 2(1− β) · eT (t)P̃
m∑
l=1

ε̃lK̃lCe(t− ζ(t)) + (1− β)υT (t− ζ(t)) · CT (q5 ⊗ I)Cυ(t− ζ(t))

+ ζ2
M (1 + 1

q6
)[F (e(t)) +

∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lC · e(tk−l+1h2)]T

· S̃[F (e(t)) +
∫ t

t−τ
ϕ(t− s)G(e(s))ds+ (L⊗ Γ )e(t) +

m∑
l=1

ε̃lK̃lCe(tk−l+1h2)]

+ ζ2
M (1 + q6) ·

m∑
l=1

ε̃lυ(tk−l+1h2)CT K̃T
l S̃K̃lC

m∑
l=1

ε̃lυ(tk−l+1h2).

(55)
Letting

ξ̃(t) := [eT (t) eT (t− ζ(t)) eT (t− ζM ) eT (tkh2)

· · · eT (tk−m+1h2) FT (e(t)) GT (e(t))
∫ t

t−τ
ϕ(t− s)GT (e(s))ds]T .

One can get

˙̃V (t) + α2Ṽ (t) ≤ ξ̃T (t)Π̃ξ̃(t) + (1 + 1
q6

)ξ̃T (t)H̃T S̃H̃ξ̃(t) + (1− β)q3

N∑
i=1

k̃i + Υ, (56)

where

Υ =(1− β)|CT (q5 ⊗ I)C|‖υ(t− ζ(t))‖2 + [β|CT (q2 ⊗ I) · C|+ (1− β) ρ̃
m
|CT ((q4 + 1)⊗ I)C|

+ ζ2
M (1 + q6) · |

m∑
l=1

CT K̃T
l S̃

m∑
l=1

K̃lC|]‖υ(tk−l+1h2)‖2,
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‖υ(t− ζ(t))‖2 ≤ V(0)
λmin(P)e

−α1(t−ζM )+ k̂

α1λmin(P) ,

‖υ(tk−l+1h2)‖2 ≤ V(0)
λmin(P)e

−α1(tk−m+1h2) + k̂

α1λmin(P) ,

Π̃ =



Π0 ∗ ∗ ∗ ∗ ∗ ∗
Π21 Π22 ∗ 0 0 0 0

e−α2ζM W̃Π32Π33 0 0 0 0
0 ∗ ∗ Π44 0 0 0
Π51 ∗ ∗ ∗ Π55 0 0

(Ψ̃ ⊗ J̆2)T ∗ ∗ ∗ ∗ Π66 0
P̃ ∗ ∗ ∗ ∗ ∗ Π77


,

with

Π0 = Π11 + β

m∑
l=1

ε̃lP̃ K̃l((q1 + q2)⊗ I)−1
m∑
l=1

ε̃lK̃
T
l P̃ + (1− β)

m∑
l=1

ε̃lP̃ K̃l((q3 + q5)⊗ I)−1
m∑
l=1

ε̃lK̃
T
l P̃ ,

the definition of Π11 is the same as above. Apply Schur complement twice to (47) yields Π̃ + (1 +
1
q6

)H̃T S̃H̃ < 0, and

‖e(t)‖2 ≤ Ṽ (0)
λmin(P̃ )

e−α2t +
(1− β)q3

∑N
i=1 k̃i + Υ

α2λmin(P̃ )
, (57)

so far, the proof is complete.

Theorem 6. Under assumption 1, the error system (43) is exponentially ultimately bounded if there exist
block diagonal matrices P̃ > 0, Q̃ > 0, R̃ > 0, S̃ > 0, Zl, diagonal matrices Φ̃ > 0, Ψ̃ > 0 and real matrix
W̃ , such that the following LMIs (58) and (59) hold for given parameters q1 > 0, q2 > 0, q3 > 0, q4 > 0,
q5 > 0, q6 > 0, ζM > 0, α2 > 0, ρ̃ > 0, k̃i > 0(i = 1, 2, · · · , N), β ∈ (0, 1), ε̃l ∈ [0, 1](l = 1, 2, · · · ,m) and
the controller gain K̃l. where [

S̃ W̃T

W̃ S̃

]
> 0, (58)

and  Π̄ H̃T P̃ H̄T

∗ (−2P̃ + S̃)(1 + 1
q6

)−1 0
∗ ∗ Π̆

 < 0, (59)

where

Π̄ =



Π11 ∗ ∗ ∗ ∗ ∗ ∗
Π̄21 Π22 ∗ ∗ ∗ ∗ ∗

e−α2ζM W̃ Π32 Π33 ∗ ∗ ∗ ∗
0 0 0 Π44 ∗ ∗ ∗
Π51 0 0 0 Π55 ∗ ∗

(Ψ̃ ⊗ J̆2)T 0 0 0 0 Π66 ∗
P̃ 0 0 0 0 0 Π77


,

Π̄21 = −e−α̃ζM W̃ + e−α̃ζM S̃ + (1− β)
m∑
l=1

ε̃lC
TZTl , H̄ = [ZTl 0 0 0 0 0 0], (60)

other definitions are the same as Theorem 5. Moreover, if the LMIs (58) and (59) are solvable, the desired
controller gain matrices are given as

K̃l = P̃−1Zl, l = 1, 2, · · · ,m.

Journal of Advances in Applied Mathematics, Vol. 6, No. 2, April 2021 107

Copyright © 2021 Isaac Scientific Publishing JAAM



5 Numerical Example

In the previous sections, the sufficient conditions for the synchronization of complex dynamic networks
with bounded distributed delays are given by the method of memory event triggering. In this section, an
example is given to verify the validity and feasibility of the theoretical results. Let the nonlinear function
f(xi(t)) to be Chua’s circuit[40]. Then f(xi(t)) can be described as follows:

f(xi(t)) =

a(−xi1 + xi2 − o(xi1))
xi1 − xi2 + xi3

−bxi2

 , (61)

where o(xi1) = dxi1 + 1
2 (c− d)(|xi1(t) + 1| − |xi1(t)− 1|), a = 10, b = 18, c = − 4

3 , d = − 3
4 .

Let

g(xi(t)) =

−0.8xi1 + 0.2(|xi1(t) + 8| − |xi1(t)− 8|) + 0.4xi2
0.8xi2 + tanh(−0.6xi2)
0.6xi3 + tanh(−0.4xi3)

 , (62)

ϕ(t) = e−t, τ = 2. Let

U1 =

−ad− a a 0
1 −1.2 1
0 −a −1.8

 , U2 =

−ad− a a 0
1 0.8 1
0 −a0.8

 , J1 =

−0.8 0.4 0
0 0.8 0
0 0 0.6

 , J2 =

−0.4 0.4 0
0 0.2 0
0 0 0.2

 ,
which is easy to verify, the sector-bounded condition of nonlinear vector-valued functions in Assumption 1
is satisfied.

In the event trigger condition, let ρ0 = 0.2, ρ1 = 0.2, λ = 0.1, ρ(t) ≤ ρ0 +ρ1 = 0.4, ki = 0.3(i = 1, 2, 3).
The memory area capacity m = 2, ε1 = 0.7, ε2 = 0.3. In addition, τM = 2,

A =

−5 3 2
3 −4 1
2 1 −3

 , C =
[
1 0 1

]
,

and Γ = 3I. When the target node is known, a feasible solution is obtained by solving inequality (7), (8)
by using Matlab LMIs Toolbox:

P1 =
[ 0.0297 −0.0007 −0.0021

∗ 0.0309 0.0002
∗ ∗ 0.0300

]
, P2 =

[ 0.0378 −0.0013 −0.0025
∗ 0.0390 0.0002
∗ ∗ 0.0379

]
, P3 =

[ 0.0596 −0.0024 −0.0031
∗ 0.0608 0.0005
∗ ∗ 0.0599

]
,

Q1 =
[ 1.7096 −0.4118 0.0293

∗ 2.1723 0.0088
∗ ∗ 2.4380

]
, Q2 =

[ 1.7304 −0.4118 0.0301
∗ 2.1928 0.0088
∗ ∗ 2.4594

]
, Q3 =

[ 1.7449 −0.4114 0.0308
∗ 2.2076 0.0086
∗ ∗ 2.4739

]
,

R1 =
[ 0.4797 −0.3636 −0.0307

∗ 0.2871 0.0523
∗ ∗ 0.3509

]
, R2 =

[ 0.5222 −0.3697 −0.0330
∗ 0.3260 0.0537
∗ ∗ 0.3948

]
, R3 =

[ 0.5471 −0.3727 −0.0360
∗ 0.3507 0.0547
∗ ∗ 0.4206

]
,

S1 =
[ 0.9918 0.0175 0.0282

∗ 0.9765 −0.0055
∗ ∗ 0.9942

]
, S2 =

[ 0.9949 0.0177 0.0283
∗ 0.9795 −0.0054
∗ ∗ 0.9973

]
, S3 =

[ 1.0018 0.0166 0.0284
∗ 0.9855 −0.0052
∗ ∗ 1.0036

]
,

W1 =
[−0.2849 0.0541 −0.1800

∗ −0.0700 0.0023
∗ ∗ −0.2675

]
, W2 =

[−0.2901 0.0551 −0.1800
∗ −0.0757 0.0015
∗ ∗ −0.2731

]
, W3 =

[−0.2908 0.0548 −0.1795
∗ −0.0768 0.0017
∗ ∗ −0.2742

]
,
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Φ = diag{0.0199 0.0203 0.0203}, Ψ = diag{5.6412 5.6783 5.6963},

K1
1 =

−0.6394
−0.0666
−0.6486

 ,K2
1 =

−0.4969
−0.0589
−0.5067

 ,K3
1 =

−0.3086
0.0388
−0.3145

 ,
K1

2 =

 0.1298
−0.0303
0.1583

 ,K2
2 =

 0.1092
−0.0447
0.1219

 ,K3
2 =

 0.2219
−0.0208
0.2338

 .
By solving Theorem 1, the complex dynamic network can achieve synchronization for given parameters.
When the target node is unknown, the estimator is designed first. Suppose ηM = 3, τ = 2, α1 = 0.3,

ρ̂ = 0.4 and ε̂1 = 0.6, ε̂2 = 0.4. By solving inequality (32), (33), we can get:

P =
[ 0.0424 −0.0055 0.0022

∗ 0.0440 −0.0001
∗ ∗ 0.0476

]
, Q =

[ 0.6355 −0.2906 0.2102
∗ 1.0216 −0.0942
∗ ∗ 1.1824

]
, R =

[−0.1110 −0.1084 −0.0660
∗ −0.1622 0.0090
∗ ∗ −0.1658

]
,

S =
[ 0.4329 0.0009 0.0444

∗ 0.3994 −0.0043
∗ ∗ 0.4381

]
, W =

[−0.4370 0.0278 −0.3338
∗ −0.0734 0.0075
∗ ∗ −0.4268

]
, E1 =

[−0.3097
−0.0213
−0.2535

]
, E2 =

[0.6740
0.1246
0.5910

]
,

and φ = 0.0046, ψ = 5.1336.
Let ζM = 2, τ = 2, α2 = 0.2, ε̃1 = 0.6, ε̃2 = 0.4, q1 = q2 = 0.5, q3 = q4 = 0.4, q5 = q6 = 0.8, β = 0.4,

ρ̃ = 0.4. Combined with the design of the estimator solve inequality (46), (47), we can get:

P̃1 =
[ 0.0050 −0.0002 0.0000

∗ 0.0047 0.0000
∗ ∗ 0.0049

]
, P̃2 =

[ 0.0061 −0.0003 0.0000
∗ 0.0058 0.0000
∗ ∗ 0.0060

]
, P̃3 =

[ 0.0091 −0.0005 0.0000
∗ 0.0086 0.0001
∗ ∗ 0.0090

]
,

Q̃1 =
[ 0.6161 −0.2509 0.0001

∗ 0.8305 0.0114
∗ ∗ 1.0386

]
, Q̃2 =

[ 0.6212 −0.2517 0.0001
∗ 0.8360 0.0116
∗ ∗ 1.0453

]
, Q̃3 =

[ 0.6243 −0.2522 0.0001
∗ 0.8395 0.0116
∗ ∗ 1.0494

]
,

R̃1 =
[ 0.0777 −0.0873 0.0034

∗ −0.0210 0.0112
∗ ∗ 0.0433

]
, R̃2 =

[ 0.0830 −0.0882 0.0035
∗ −0.0170 0.0115
∗ ∗ 0.0487

]
, R̃3 =

[ 0.0859 −0.0886 0.0035
∗ −0.0148 0.0116
∗ ∗ 0.0517

]
,

S̃1 =
[ 0.6660 0.0068 −0.0006

∗ 0.6737 −0.0010
∗ ∗ 0.6676

]
, S̃2 =

[ 0.6666 0.0069 −0.0006
∗ 0.6744 −0.0010
∗ ∗ 0.6682

]
, S̃3 =

[ 0.6669 0.0068 −0.0006
∗ 0.6745 −0.0009
∗ ∗ 0.6683

]
,

W̃1 =
[−0.0026 0.0212 −0.0014

∗ 0.0219 −0.0029
∗ ∗ 0.0037

]
, W̃2 =

[−0.0036 0.0213 −0.0014
∗ 0.0210 −0.0030
∗ ∗ 0.0026

]
, W̃3 =

[−0.0042 0.0213 −0.0014
∗ 0.0205 −0.0030
∗ ∗ 0.0020

]
,

Φ = diag{0.0047 0.0047 0.0048}, Ψ = diag{3.4222 3.4360 3.4440},

K1
1 =

−0.1075
−0.0160
−0.1080

 ,K2
1 =

−0.0869
−0.0135
−0.0870

 ,K3
1 =

−0.0579
−0.0091
−0.0576

 ,
K1

2 =

−1.5298
−0.2910
−1.5809

 ,K2
2 =

−1.2402
−0.2453
−1.2793

 ,K3
2 =

−0.8284
−0.1665
−0.8508

 .
It can be proved that when the target node is unknown, the memory output feedback controller

designed based on the estimated state of the target node can synchronize the complex dynamic network.
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6 Conclusion

This paper discusses the design of synchronous controllers for complex dynamic networks with bounded
distributed delays when the target node is known or unknown. The memory event trigger control strategy
is adopted. Compared with the traditional event-triggered control method, it has the advantages of
reducing the transmission frequency of data packet signals, shortening the transient process and saving
resources. On the basis of the designed memory event triggering scheme, some sufficient conditions for
the exponentially ultimately bounded of complex dynamic networks are derived according to Lyapunov
function and linear matrix inequalities. Finally, the validity of the theoretical results is verified by a
numerical simulation case.
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