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Abstract A search for a distribution which adequately describes the dynamics of log returns has
been a subject of study for many years. Empirical evidence has resulted in stylized facts of returns.
Arguably, in this study, the three components of returns, mean equation part, the changing variance
part and the resulting residuals are determined and their corresponding parameters estimated
within the proposed framework. Spectral density analysis is used to trace the seasonality component
inherent in the standardized residuals. Empirical data sets from eight different indexes and common
stock are applied to the model, and results tabulated in support of the resulting framework.
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1 Introduction

It is well known that the stock prices do not follow a pure random walk as documented in the literature.
There exists a vast array of literature in search of a satisfactory descriptive statistical model for log returns.
For example [1], proposed Poisson jumps with lognormal distributions, while [2], introduced a mixture
of distribution hypothesis under a subordination process. Related modifications found in literature like
in [3] ,[4], [5] and [6] and many more confirms the need for such a model which might partially explain
dynamics of log returns. Price changes are known to be neither independent nor identically distributed.
There are linear and nonlinear dependencies between successive price changes. Distributional assumptions
concerning risky asset log returns play a key role in option pricing and in risk management to say the
least.

The presence of changing the second moment in returns were first captured in the ARCH model of [7]
and later generalized to the GARCH model by [8]. Statistical properties of log returns have been compiled
and documented as stylized facts. Most of those common stylized facts were like heteroscedasticity,
gaussianity, heavy-tailed distribution can be found in [9] and [10] for example. One of those stylized facts
indicates that empirical distributions of daily stock returns differ significantly from the traditional Gaussian
model and tend to be skewed and leptokurtic with heavy-tailed distributions. Several distributions have
been applied to model heavy-tailed aspect of returns, like hyperbolic distributions [11] , normal inverse
Gaussian and other classes of generalized hyperbolic distribution [12], [13] and [14].

Recently, impacts of jumps in volatility and in returns, have been argued to influence dynamics of
returns. Studies show that jumps in returns can generate a large movement such as the infamous crash of
1987, but the impact of a jump in volatility is transient, see [15],[16]. A jump in returns today has no
impact on the future distribution of returns, on the other hand diffusive volatility is highly persistent, but
its dynamics are driven by a diffusion process. While a jumps in returns are infrequent events, they are
typically large and some empirical studies have shown that they explain 8 to 10% of the total variance in
returns. Jump component, command relatively larger risk premia than the diffusive, one see [17],[18].

The main focus of this paper is to propose a general framework for modeling dynamics of the underlying
process, incorporating some of the stylized features observed in log returns from different financial data
sets, with an aim of tracing seasonal component. This paper is organized as follows. Section 2, presents a
general framework of modeling log returns and a few examples (from literature) on the distribution of
log returns and how they are nested within the proposed model. In Section 3 we discuss modelling of
standardized residuals and the assumptions of covariance stationary to compute corresponding spectral
densities. Parameter estimations, data analysis and summary of empirical results are presented in section
4. We draw conclusions and discussion in section 5.
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2 Modeling the Underlying

2.1 General Framework

According to the the autoregressive jump intensity (hereafter ARJI) model by [19], the error term of
log returns is specified to have two stochastic innovations of returns which comprise stochastic volatility
component €; ; and a jump €3 ;. The first component, in this case €; ; is a zero mean innovation with a
normal stochastic process, while €3 ; is a jump innovation. These two innovations are contemporaneously
independent. Similarly, we adopt [20] idea of modeling return (see also [21]) and extend it to get the
following framework, which forms the basis of our empirical study.

Let (£2,F, (F¢)tejo, 1), P be a stochastic basis describing the uncertainty of the economy. We refer to P
as the physical probability measure and F; represent the information flow driven by Brownian motion
B = (By)ieo,r) and Lévy process L = (Ly)¢ejo,1] of the stochastic process. Let S; be the price of a stock
at time ¢ adapted to the natural filtration F;. Let X; be continuously compounded return on the stock.

Proposition 2.1. Define daily log return as Xy = log Sy — log S;_1. Therefore

St +d
Xt10g< fg 1t|9:t—1>
t—

where dy is one period dividends paid, then
X =my(50m) + o (Ve + wés),
where & € GHVt € ZT, o = g(0?,9,; s € (00,t —1];0,), w >0, (1)
¥ ~ 1.4.d.(0,1), & ~i.i.d.D(.;0p)

my(.;0m) denote the mean function, o4(.;0,) denote the variance process and 0 = (0, 0s,0p), and GH
s a class of generalized hyperbolic distribution.

In equation (1), mq(.;0m) denotes the conditional mean, which is governed by a set of parameters 6y,
provided that the process are measurable with respect to the information set F;_1, likewise the parameter
set 0, governs the changing variance process, which depends on lagged values of innovations. D(.;0p) is
used to denote a zero mean distribution function which depends on the set of parameters in 0p.

2.2 Examples Nested within the Framework

Geometric Brownian motion As an example, let S; denote the price of the asset at time ¢ governed
by geometric Brownian motion which solves the following SDE

dS; = aSidt + oS dWy, = % =Xt = exp(at + oWy),
0

where a and o are given constants. Let h > 0 denote the length of time between observations of the price.
Define X;(h) as a log return over the time interval [t, ¢ + h],then

dX, = adt + 0dW, ,= X, = at + o\/tZ, Z ~ N(0,1), thus

S
Xt(h) = loge ( :;—l—h) = Oé[t + h — t] + U(W(tJrh) — Wt)
t

ah + oWy, ,= X,(h) ~ N(ah,o?h),Yh >0 (2)
when h =1 X; = a+ oZ, where my(.,0m) =, o¢(.,09) =0,% =Z,w =0.

It is well known that any normal distribution has zero skewness and excess kurtosis of zero, contrary
to what we get from log returns. Attempts to model skewness and leptokurtic property of log returns,
lend to augmenting geometric Brownian motion with Poisson driven jump process resulting to Bernoulli
mixture jumps and jump diffusion model respectively.
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Bernoulli mixture jump process According to [4], the log returns are assumed to be driven by a
Poisson mixture of jumps. Setting the mean size of jump equals to zero, it guarantees a symmetric

distribution. Thus, the daily returns, whose density is a Bernoulli mixture of Gaussian densities is given
by

fo(z) = Plz = 0]¢(z, o, 0°) + Pl = 1]¢(x, 0, (6 + %))
= (1 — )\)(;5(04,02) + A¢(x,02 —+ 52), where

ol ) = e (—(””2‘0”)) |

This partially takes care of non normality aspect of heavy-tailed property of returns, but does not account
for heteroscedasticity. This implies that

mi(.,0m) = E(x) :=a*, o¢(,09) =var(x):=o0", 94=0, w=1, & =1(.)

In this case the changing variance is assumed to be a constant. It can be seen quite easily that this process
is nested in within the proposed framework.

Jump diffusion models In a stochastic differential form, the return process under the jump diffusion
process, (see for example [3], [16], [22], [23], [24]) may be represented as,

dS; = aSydt + oSy dW, + JSydm()\)

where « is the drift; o the standard deviation of the diffusion component; J is the jump size,and 7 is a
Poisson process with intensity parameter A\. Thus X;(h) is defined as

x, ifKZO;

x ~ N(uh,0?h), y1,v2,...,yr is an ii.d sequence with common distribution say G, while K is
distributed Poisson with parameter A\h. Therefore

2 Ny
lOge St+h — lOge St = Xt(h) = <(O{ — % — k)\) + O'Wt + Zloge K) ,Vh > O,

i=1
o? ol
ifh=1,X; = (@—— —kX+o [ Z+) log Vi, where
2 o
0.2 Ny
my (., 0m) = o — > = kX, o(,09)=0, V=2 &= leoge Yi. (3)
j=

Empirical studies have documented much evidence as one of those stylized facts of conditionally changing
variance, which led to many proposals of modeling varying jump intensities within the changing variance
set up as studied by [6], and [25] for example.

2.3 Modeling Changing Variance

Several ARCH type models conditioned on either on Normal or student t distribution were used to model
volatility. Specifications that could accommodate symmetric responses to negative and positive return
innovations were considered. In order to relate to the flexible variance specifications in (1) to some existing
model, we start by noting the functional format of GARCH(1,1) specification.

o} =w+aoi_y + el (4)
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Such models are generally said not to allow for leverage effect, which refers to the tendency for changes
in stock prices to be negatively correlated with volatility. One such extension to the GARCH model
considered in (4) is the nonlinear asymmetric GARCH model, or NGARCH model, of [26] given by

of =w+aoi 4+ Bo (e +7)? (5)

In the NGARCH model the leverage effect is modeled through the parameter v, and if v < 0 then
there is a leverage effect, otherwise if v = 0 the model turns out to be GARCH model. We observe
that GARCH response is characterized by a symmetric response of volatility to positive and negative
errors €;_1. To model impacts of lagged positive and negative innovations one may favour a so called
threshold GARCH which was proposed by [27] for the variance and by [28] for the standard deviation.
The TGARCH(1,1) model for o7 takes the following form

‘7t2 =w+ 5%271 +nealle,_ <o+ a0t2,1 (6)
where 1I(.) denotes an indicator function. The leverage effect describes that the current volatility is more
affected by negative innovations relative to the positive ones. The following models were used to model
the changing variance component with the intention of extracting a leptokurtic standardised residuals.
GARCH(1,1), TGARCH(1,1) and NGARCH(1,1) specifications conditioned on standardized normal and
student t distributions respectively.

Normal distribution and student t distribution

If the conditional distribution f(z;|F;_1) is normal with mean p; and variance o7 the likelihood function
is given by

- V2o 20

where f(z1;0) is the marginal density function of the first observation x;. The value that maximizes the
likelihood function given by

Fon i) = o) ] e o (510

T
1 _ 2
L =log, f(z1,0) — 3 § (loge 21 + log, o2 + W)
t=1

t

A similar case follows for the standardized student t-distribution. Let x, be a student t distribution with
v degrees of freedom. Then var(X) =v/(v—2) for v > 2. Define ¢, = X/\/v/v — 2. The probability
density of € is

—(1+v)/2
Fledv) = pdgﬁﬁi)@)w ( Ui) Cus2 (7)
If we let, a; = o€;, we obtain the conditional likelihood function of a; as
d v+1 a? log, o2
L=1log, f(.|a,Am) = _t,;_l [ 5 log, (1 + o= 2)%2) + 5 ]

3 Leptokurtic Residuals and Their Spectral Density

The optimal combination of ARMA-GARCH type models of each data set under investigation was used
to model changing variance component (say, o; of (1)) and the resulting estimates were as reported in
Table 3. As a result, properties of the filtered standardized leptokurtic covariance stationary and skewed
residuals, & of in (1) were investigated further, across different data sets, all of the residuals fit Normal
inverse gaussian distribution. Moreover their spectral densities were determined and different markets
data gave different spectral densities with different periodicity as reported Table 2. Spectral densities
used are as defined in the following subsections.
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3.1 Spectral Densities of Standardized Residuals

For a properly specified ARCH model, the standardized residuals d; = a;/o¢ form a sequence of i.i.d
random variable. Let {v,,h = 0,+1,+2,...} be the autocovariance function of discrete stationary time
series, then the power spectrum P(v) of the series is defined as

o o0

P(v) = Z y(h)e ™h, v € [~m, 7], where Z [v(h)] < o0 (8)

h=—00 h=—00

The normalized spectral density function, say f(v) is defined as the Fourier transform of the ACF (auto
correlation function) p, = v(h)/v(0),h = 0,£1,42, ... is given by

_ lP(U) _ l = @e—ivh _ v —r.
f(U) - T ’Y(O) T hzz_oo 7(0) ) ph p—k7 € [ ’ ] (9)

The spectrum of covariance stationary time series is a positive real function of a frequency variable
associated with a stationary stochastic process. Intuitively the spectrum decomposes the content of a
stochastic process into different frequencies in that process and helps us identify periodicity. We consider
four different models and their corresponding normalized spectral densities, (i) pure white noise, (ii) the
AR(1), (iii) ARMA(1,1) and (iv) seasonal autoregressive model hereafter (SAR(1)).

(i) Pure random process
Let, Y; = W; where {W;} is pure white noise, it implies

o2, h=0;
(k) = {o h > 0.

1 = . 0 o2
= fylv) = o > y(h)eh = % =90, vE[-1/2,1/2]. (10)
h=—o00
We observe that a process is regarded as a practical approximation of a continuous white noise, if the
spectrum is substantially constant over the frequency band of interest.
(ii) AR(1) process

Let Y; = &Y,y + W;, where W; is a white noise and |[¢| < 1, then its auto covariance
function is given by ~, = cov(Y;, Yi_x) = ®yp_1 = vy where ~g = var(Y;). This implies that
70 = 02,/(1 — ®?). The spectral density for AR(1) is given by

1 & —omivh _ 1 = oo d" —2mivh
fy(U) ; Z V(h)e = ; Z 174526 , UE [_1/271/2]
h=—o00 h=—00

Yo 2 o et 2ok ook Y Pei2mv Pe—i2mv
o ( +ﬁ}; e +e ]) - ( + T Y T g

0 1-9° _ 1 & (11)
o 1—2Pcos2mv+ @2 21 \ 1 — 2P cos(2mv) + &2 )

(iii) ARMA(1,1) Process
Similarly, if Y; = @Y;1 + Wiy + 0W;_1, |P| <1, |0] <1, it follows that

02 ([ 1+ 20 cos(2mv) + 62
no =3 ( o)

:% 12’/TCOS(2¢U)+@2>7 NS [_1/271/2]

(iv) SAR(1) Process
A stationary first order seasonal autoregressive model SAR(1), of Y}, is given by

Y=Y, +W;, 0<P<1.
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Therefore (1 — @LI)Y; = Wy, = (L) = (1 — #LI)~! and its normalized spectral density is given by

o 1
) = or (1 — 26 cos(2mq) + 9752) ' (12)

The resulting spectral density is periodic with period 1/¢, and gets peaked as e =™ passes near the

roots of the complex function 1 — @29 = 0 where 7 = |#|~Y/% and z = re’?, r = |P|. For example if
q = 12, then the twelve poles are at |@|~1/12e4™/6 where k = 0, £1, 42, ..., +6. Thus if 0 < & < 1 and
q > 1 then the series in question is periodic with frequency of f = v/2x, and a period 1/f = 27 /v.

4 Data Description and Preliminary Statistics

Daily adjusted closing price data was randomly chosen for the following seven indexes and one from
commonly traded stocks from Newyork stock exchange. The data was collected from Yahoo finance
website, apart from NS20 index data. We selected the most actively traded index-based data such as
S&P500, RUI(RUSSELL1000), CAC40, VIX, DAX, AMZN, and NSE20 index of Nairobi securities.
Closing daily adjusted share prices were used to carry out the analysis. Table 1 provide summary of
descriptive statistics of the data of daily log returns of the adjusted closing price.

Table 1. Summary Basic statistics of daily log returns

Basic.stats. S&P500 VIX CAC40 RUI DAX NSE20 AMZN
No.(n) 6580.0 6584.0 6577.0 5835.0 6383.0 3651.0 4722.0
Minimum -0.0947 -0.3506 -0.0947 -0.0956 -0.0987 -0.0523 -0.2846
Maximum 0.1096 0.4960 0.1059 0.1104 0.1080 0.0695 0.2962
1. Quartile -0.0047 -0.0360 -0.0070 -0.0048 -0.0065 -0.0036 -0.0153
3. Quartile 0.0057 0.0318 0.0077 0.0057 0.0076 0.0036 0.0171
Mean 0.0002 0.0000 0.0001 0.0003 0.0003 0.0001 0.0012
Median 0.0005 -0.0032 0.0003 0.0006 0.0008 -0.0001 0.0000
Sum 1.6482 0.2273 0.7547 1.4866 1.8025 0.1871 5.7676

SE Mean 0.0001 0.0008 0.0002 0.0002 0.0002 0.0001 0.0006
Variance 0.0001 0.0040 0.0002 0.0001 0.0002 0.0001 0.0016
Stdev 0.0114 0.0629 0.0141 0.0117 0.0143 0.0085 0.0398
Skewness -0.2380 0.6692 -0.0416 -0.2717 -0.1117 0.4454 0.4442
Ex.Kurt 8.5567 4.0910 4.3339 8.4719 4.5196 8.0967 7.5057

From 03Jan90 02Jan90 03Jan90 03Jan92 26Nov90 03Jul95 16May97
To 11Febl6 18Feb16 11Feb16 12Feb16 11Feb16 22Apr10 23Feb16

The total number of observations for the period of analysis is over 40,000 daily log returns as shown
in Table 1. Whereas the population skewness and kurtosis for normal distribution are respectively 0 and
3, statistics computed on log returns X;, sample skewness and excess kurtosis are way far from zero and
three respectively.

Figure 1, and Figure 2 displays autocorrelation of squared returns on the right and seasonal component
extracted from the filtered but stationary, standardized residuals. It can be reported that for DAX index
returns, filtered residues, the resulting spectral density is a constant which implies that the residuals
represent a pure white noise as implied by equation (10). Table 2 reports the number of seasonal
components observed across the other filtered data sets. For example based on NSE20 AR(3)GARCH(1,1)
conditioned on students t distribution (7), filtered residuals, there seems to have four seasonality peaks
of approximately 14,17,28, and 58 days respectively. Optimal ARCH models fit for changing variance is
presented in the same table. For the other data sets the observed cycles are as presented in Figures 1,
and 2 respectively.
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Figure 1. Analysis of returns seasonality for S&P500, VIX, CAC40 and RUI
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Figure 2. Analysis of returns seasonality for DAX,NSE20 and AMZN
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Table 2. ARMA-ARCH type models and spectral density results

Param. |P| max. # v Market Index n Optimal model Cond. distr.
B[ £0 3 SLP500 6580 TARCH(L1) STD(0,1)
1] # 0 4 VIX 6584 TGARCH(L,1) NORM(0,1)
|B| # 0 2 CAC40 6577 GARCH(1,1) NORM(0,1)
18] £ 0 5 RUI 5835 TGARCH(L,1) STD(0,1)
& =0 0 DAX 6383 GARCH(1,1) NORM(0,1)
|B| # 0 4 NSE20 3651  AR(3)+GARCH(1,1) STD(0,1)
|®] #0 1 AMZN 3651 NGARCH(1,1) NORM(0,1)

Table 3 reports quasi-maximum likelihood estimates (QMLES) using daily returns from respective
indices. Optimal standard errors are reported in the parenthesis below the estimates. Loglik denotes
the log likelihood value. All the standardized residual were non normal since their excess kurtosis were
way far above zero. Q(5) is the Ljung-Box portmanteau test for up to 5th-order serial correlation in the
standardized residuals, whereas Q?(5) is for up to 5th order serial correlation in the squared standardized
residuals. ARCH5 denotes the ARCH test.

5 Concluding Remarks

In this article we propose a feasible way of detecting seasonality within standardized residuals, after
calibrating skewed time-varying volatility and leptokurtic log returns in discrete time within general
framework of ARMA-ARCH Lévy model. Within the GARCH models framework, conditioned on either
standardized student t distribution or standard normal were used to model changing variance. Assuming
that the series had two contemporaneous components as proposed in [25] we further studied the standard-
ized residuals using spectral density resolution to trace long term cycles present in the underlying process.
If the changing variance is optimally eliminated then based on the basic principles of serial correlation and
covariance stationarity, we examine all the data sets and where possible trace the underlying seasonality
components. One can argue based of the evidence of the data set if there is any long term periodicity then
the market data will review the signal, which was quite evident from the data set sampled. It will be more
prudent if further empirical study will be done in the future to confirm or refute the observed results.
The proposed framework delivers predictive distribution which can be applied to option pricing of the
payoff function for a given econometric model. As a result, the probability distribution could be useful to
market participants who wish to compare the resulting model predictions to the potential prices on the
market in developed and emerging economies. The framework takes care of most of the observed stylistic
fact about financial time series data i.e. skewness and leptokurtic nature of demeaned GARCH filtered
log returns, aggregational Gaussianity, and presence of jumps and in this case presence of seasonality.

a) Developed markets and emerging markets may not have the same underlying dynamics, but all the
returns regardless of there origin are not normally distributed. It would be incorrect to assume that a
universal model of log normal distribution would be ideal for all types of financial time series data sets

b) The presence of linear autoregressive dynamics, AR(3)-GARCH(1,1) conditioned on student t
distribution, reveals a seasonality signal of approximates (7,15,28 and 60) working days as observed
from the spectral density.

In this study we have not discussed whether presence of seasonality can be useful from a practitioners
stand point. In addition, how one can exploit such information to implement a volatility trading strategy,
was left for future research. see [29] for an interesting comparison of non random price movement.
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Table 3. Optimal model estimation result for each index and stock
Index S&P500 VIX CAC40 RUI DAX NSE20 AMZN
Model TGARCH TGARCH GARCH TGARCH GARCH GARCH NGARCH
Loglik 21683.1 9273.2 19555.1 19149.8 19040.9 13312.0 9419.9
n 3.28E-04 2.84E-03 4.45E-04 3.76E-04 6.47E-04 1.48E-03
(8.7E-05) (7.1E-04) (1.36E-04) (1.1E-04) (1.35E-04) (4.06E-04)
¢1 0.2243
(0.0180)
G2 0.1332
(0.0174)
€ 0.0943
(0.0165)
w 1.73E-04 3.965E-03 3.0E-06 1.84E-04 3.0E-06 6.0E-06 1.74E-04
(3.6E-05) (4.87E-04) (1.0E-06) (3.3E-05) (1.0E-06) (1.0E-06) (2.0E-05)
«@ 0.07162 0.07282 0.0861 0.0744 8.32E-02 0.2488 3.41E-02
(0.0102) (7.51E-03) (8.82E-03) (9.27E-03) (6.72E-03) (0.0199) (8.93E-04)
I} 0.9275 0.883 0.8978 0.9244 0.9002 0.66154 0.9695
(0.0107) (0.0122) (9.55E-03) (9.43E-03) (7.68E-3) (0.0166) (2.96E-04)
¥ 1.0571
(3.34E-02)
n 0.969255 -1.00 0.9999
(0.0961) (0.124) (0.0981)
v 7.8939 8.237 4.4072
(0.7435) (0.8744) (0.2489)
Q(5) 4.519 58.61 4.897 5.346 3.285 11.832 6.335
(0.1961) (2.2E-16) (0.1615) (0.1276) (0.3575) (0.0E-0) (0.0749)
Q2(5) 11.572 3.145 6.541 11.159 2.614 2.077 6.822
(0.9269) (0.3812) (0.0669) 4.62E-03 (0.8206) (0.8955) (0.0573)
ARCH5 1.4739 0.622 1.849 1.584 0.8365 11.524 0.2102
(0.9269) (0.8471) (0.5055) (0.5705) (0.7820) (0.5859) (0.9631)
AIC 6.588 2.816 5.945 6.5617 5.9649 7.2884 3.987
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Appendix

Log returns and ARCH models

Stock price is assumed to be modelled by
2

dSt = uS’tdt + O'Stth, = ST = St exXp <(,LL - %)(T - t) + O'(WT - Wt)> .

Thus )
Sr = S;exp(X7) , where Xg ~ N {(u - %)(T —t),0%(T — t)} .

Let T =t + 1, this implies that log,(S¢+1/St) = X¢, t=1,2,..,n . X; is known as log return, which
can be positive or negative depending on the price dynamics. Recent studies assume that returns can be
presented as

X = e + oz + iy,

where p; is the mean component and o;2; represents the heteroscedastic part and the last term represents
the residuals. Mean component could be modeled by ARMA models, while for the changing variance
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component, ARCH type models are widely used. If the residuals are i.i.d’’s, like in this study, then other
properties could be investigated such as spectral analysis.

In general,[9] provides a broad review of the properties of returns known as stylized facts. One of the
facts entails presence of changing variance oy {commonly known as volatility} inherent within the returns
which are skewed and heavily tailed in distribution. The family of ARCH models provides a popular
candidate for modeling heteroscedasticity, as found in [8] in general. let

Xt =M + &¢; Et = OtZt, Zt ™~ zzd(O, 1)
The process (g¢),t € Z+ is ARCH(q), where E[g;|F;—1] =0, and wvar(e/|Fi—1) = o7, thus
q
afzu%—Zaiaf_i with w >0, a; >0,i=1,2,...,q .
i=1

The ARC H (g) model can be generalized by extending it with autoregressive terms of volatility. Some of
the models studied in this paper include

q P
GARCH(p,q) 07 =w+ Z Qi + Z ﬁjUtZ—j

i=1 j=1

q p
TGARCH(p,q) , 07 = w + Z [ailes—il +viled_il] + Zﬂjgtz—j
j=1

i=1
NGARCH(1,1) , 0? =w + aoi | + Bo? (-1 +7)>

Quasi-Maximum likelihood approach is used to estimate the parameters of the ARCH models as shown
in the Table 3.
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