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Abstract. In this paper we consider the estimation of parameters under a bounded asymmetric loss 
function. The Bayes and invariant estimator of location and scale parameters in the presence and 
absence of a nuisance parameter is considered. Some examples in this regard are included. 
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1   Introduction 

In the literature, the estimation of a parameter is usually considered when the loss is squared error or in 
general any convex and symmetric function. The quadratic loss function has been criticized by some 
researches (e.g., [4], [5], [6] and [7]). The proposed loss function is 

( ){1 ( ) }( , ) {1 }
ab a eL k e

   
    (1.1) 

where 0a   determines the shape of the loss function,   0b   serves to scale the loss and 0k   is 
the maximum loss parameter. The general form of the loss function is illustrated in Figure 1. This is 
obviously a bounded asymmetric loss function. 

Figure 1. The loss function (1.1) for a=1.	

In this paper, we first study the problem of estimation of a location parameter, using the loss function 
(1.1). In section 2 we introduce the best location-invariant estimator of   under the loss (1.1). In 
section 3, Bayesian estimation of the normal mean is obtained under the loss (1.1). Then we study the 
problem of estimation of a scale parameter, using the loss function 
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where 0a  , , 0b k  . The loss (1.2) is scale invariant and bounded. In section 4 we introduce the best 
invariant estimator of the scale parameter   under the loss (1.2). Finally in section 5 we consider a 
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subclass of the exponential family and obtain the Bayes estimates of   under the loss (1.2). Since the 
parameters b  and k  do not have any influence on our results, so without loss of generality we take 

1b k   in the rest of the paper. 

2   Best Location-Invariant Estimator 

Let 1( ,..., )nX XX  have a joint distribution with probability density 1( ) ( ,..., )nf f X X     X  
where f  is known and   is an unknown location parameter. The class of all location invariant 
estimators of a location parameter   is of the form [3] 
 0( ) ( ) ( )v  X X Y   

where 0  is any location-invariant estimator and 1 1( ,..., )nY Y Y  with ,i i nY X X   1,..., 1i n   
and the best location-invariant estimator *  of   under the loss function(1.1), is 

* *
0( ) ( ) ( )v  X X y , where *( )v y  is a number which minimizes 
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(see [3]). Differentiating with respect to ( )v y  and equating to zero, it can be seen that *( )v y  must 
satisfy the following equation 

 

*( ( ) ( ))* * 0
0 0( ( ) ( )) ( ( ) ( ))

0 ( 1) 0
a va v a v eE e e

 


  


     

X yX y X y Y y   (2.1) 

Example 2.1: (normal mean) Let 1,..., nX X  be i.i.d. random variables having normal distribution with 
mean   (real but unknown) and known variance 2.  If 0( ) ,X X  it follows from Basu’s theorem 
that 0( ) X  is independent of Y  and hence the best location-invariant estimator of   is given by 

* *( ) ,X v  X  when *v  is a number which satisfies (2.1), i.e. 
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  (2.2) 

So, we can find *v  by a numerical solution. 

Example 2.2: (Uniform) Let 1,..., nX X  be i.i.d. according to the uniform distribution on 

,
2 2
  

 
  

 
 where   is real (but unknown) and ( 0)   is known. Taking 0 (1) (2)( ) ( ) 2X X  X  

which is an invariant estimator of  , the conditional distribution of 0( ) X  given Y y  depends on 

y  only through differences ( ) (1) , 2,...,i iX X V i n   . Now, note that  (1) (n),X X  is a complete 

sufficient statistic for  ,   and is independent of ( ) (1)

(n) (1)

i
i

X X
Z

X X





, 2,..., 1i n   for all ,   by 

Basu’s theorem. Hence  (1) ( ), nX X  and '
iZ s  are independent for all   and any given .  Also, note 

that the conditional distribution of 0( ) X  given '
iV s  which is equivalent to conditional distribution of 

0( ) X  given (n) (1)X X  and '
iZ s  depends only on (n) (1).X X  On the other hand, the conditional 

distribution of 0( ) X  given ( ) (1)nW X X   at 0   is of the form 
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Hence the estimator (1) ( )* *( )
2

nX X
v


 X  is the MRE estimator of ,  if *  satisfies (2.1), which 

simplifies to 
* *( ) ( ) * ** * ( ) ( )2 2

2 2( ) ( )
2 2 (1 ) (1 )

w wa v a v w wa v a vw w
a v e a v e e ee e a e a e

 
   

    
   

            (2.3) 
So, we can find *v  by a numerical solution. 

Example 2.3: (Exponential distribution) Let 1,..., nX X  be . . .i i d  random variables with the density 

 ( )1( ) xf x e x 
 


     

where R   is unknown and ( 0)   is known. 0 (1)( ) X X  is an equivariant estimator and by the 
Basu’s theorem, it is independent of Y . Therefore, * *

(1)( ) X  X  is the MRE estimator of ,  if 
*  satisfies (2.1), i.e. satisfies 
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which simplifies to 
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    (2.4) 

So, we can find *  by a numerical solution. 

3   Bayes Estimation of the Normal Mean 

Let 1,..., nX X  be a random sample of size n from a normal distribution with mean   (unknown 
parameter) and variance 2  (known parameter). In this section we consider Bayesian estimation of the 
parameter   using the loss function (1.1). 

If the conjugate family of prior distributions for   is the family normal distributions 2( , ),N b  then 
the posterior distribution of   is ( , )N m   where 
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and the posterior risk of an estimator ( ) X  under the loss function (1.1) is 

 
             21

1 1 211 1 d
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X XX XX  

so, ( )B X  is the solution of the following integral equation 
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    (3.1) 

Hence, we can find B  from the equation (3.1) by a numerical solution. 
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Also, notice that the generalized Bayes estimator relative to a diffuse prior, ( ) 1    for all R   

can be found by letting b   , i.e. 
2

.
n
   

In the presence of a nuisance parameter 2 , i.e. when 2  is unknown, a modified loss function is as 
follows 

 

1

( ; , ) 1
a

a e

L e

 
 

  

 
  
  

   
     (3.2) 

0a   which is a location scale invariant loss function. 

In this position, we obtain a class of Bayes estimators of the location parameter .  Let 
2

1


  be 

the precision which is unknown and suppose that conditional on  ,   has a normal distribution with 

mean   and variance 1 ,  where , 0R    are both known constants, i.e., 1| ~ ,N  


 
 
 

 

and   has a . . g( ).pd f   In this case, one can easily verify that 
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 To obtain the Bayes estimate of 

  for our problem, it is enough to find an estimate ( )x  which minimizes  ( ); , X,E L     
 X  for 

any X, .  This expectation is under the distribution of X, .   So B  is the solution of the following 
integral equation 

   
2 2( ) ( )( ) ( ) ( )( )

2 22

0 0
( )d d ( )d d

r ra n a nB B
B Ba e a ee g e g

           
          

             

 
     (3.3) 

which can be solved numerically. 

4   Best Scale Invariant Estimator 

Consider a random sample 1,..., nX X  from 1 ( ),f
 

x  where f  is a known function, and   is an 

unknown scale parameter. It is desired to estimate   under the loss function (1.2). The class of all 
scale-invariant estimators of   is of the form 
 0( ) ( ) ( )W X X Z  

where 0  is any scale-invariant estimator, 1( ,..., ),nX XX  and 1( ,..., )nZ ZZ  with ;i
i

n

X
Z

X
  

1,..., 1, .n
n

n

X
i n Z

X
    Moreover the best scale-invariant (minimum risk equivariant (MRE)) estimator 

*  of   is given by 
 * *

0( ) ( ) ( )w X X Z   

where *( )w Z  is a function of Z  which maximizes 
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Z z
  (4.1) 

In the presence of a location parameter as a nuisance parameter, the MRE estimator of   is of the 
form 
 * *

0( ) ( ) ( )w X Y Z   

where 0( ) Y  is any finite risk scale-invariant estimator of ,  based on 1 1(Y ,...,Y ),nY  with 

; 1,..., 1i i nY X X i n    , 1 1
1

( ,..., ), ; 1,..., 2 ,i
n i

n

Y
Z Z Z i n

Y


   Z  and 1
1

1

n
n

n
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Z

Y






  and *( )w Z  is 

any function of Z  maximizing 
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  (4.2) 

In many cases, when 1,   we can find an equivariant estimator 0( ) X  or 0( ) Y  which has the 
gamma distribution with known parameters ,   and is independent of Z . 

It follows that * 0
*w


   is the MRE estimator of   where *w  is a number which maximizes 

 

( 1) ( 1)11 ( 1) ( )1 1

0 0
( ) d d
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     (4.3) 

and hence *w  must satisfy the following equation 
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0 0
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         (4.4) 

Theorem 4.1: If 0( ) X  is a finite risk scale-invariant estimator of ,  which has the gamma 
distribution with known parameters , ,   when 1.  Then the MRE (minimum risk equivariant) 

estimator of   under the loss function (1.2) is * 0
*

( )
( ) ,

w


 
X

X  where *w  must satisfy the equation 

(4.4). 
Example 4.1: (Exponential) Let 1,..., nX X  be a random sample from (0, )E   with density 

1 ; 0,
x

e x




  and consider the estimation of   under the loss (1.2). 0
1

( )
n

i
i

X


 X  is an equivariant 

estimator which has Ga(n,1)-distribution when 1   and it follows from the Basu’s theorem that 0  

is independent of Z , hence the MRE estimator of   under the loss (1.2) is * 1
*

( )
n

ii
X



 X , where 

*  must satisfy the following equation 
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Journal of Advanced Statistics, Vol. 1, No. 2, June 2016
https://dx.doi.org/10.22606/jas.2016.12002

67

Copyright © 2016 Isaac Scientific Publishing JAS



Example 4.1: (Continued) Suppose that 1,..., nX X  is a random sample of ( , )E    with density 

( )1 xe  


  ; x  , and consider the estimation of   when   is unknown. We know that 

 (1) (1)1
, (X )n

ii
X X


  is a complete sufficient statistics for ( , )  . It follows that 

0 (1)1
( ) 2 ( )n

ii
X X


 Y  has 1Ga(n 1, )

2
 -distribution, when 1  , and from the Basu’s theorem 

0( ) Y  is independent of Z  and hence (1)1*
*

( )
( )

n
ii

X X







X  is the MRE estimator of   under 

the loss (1.2), where *  must satisfy the following equation 

 

2 1 1( ) ( )2 12 2
0 0

d d
a x a xa a
w wa ax e x en a nw wx e x e x e x

 
         (4.6) 

Example 4.2: (Normal variance) Let 1,..., nX X  be a random sample of 2(0, )N   and consider the 

estimation of 2 . 2
0

1
( )

n

i
i

X


 X  is a finite risk scale-invariant estimator of 2  and is independent of 

Z , and when 2
01 , ( )  X  has 1Ga( , )

2 2
n -distribution and hence 

2

* 1
*

( )

n

i
i

X






X  is the MRE 

estimator of 2 , where *  must satisfy the following equation 
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Example 4.2: (Continued) Let 1,..., nX X  be a random sample from 2( , )N   , with a nuisance 

parameter  . In estimating 2  using the loss (1.2), it follows that 2
0

1
( ) ( )

n

i
i

X X


 X  is 

independent of Z , and when 2 1  , the distribution of 0( ) Y  is 1 1Ga( , )
2 2

n  . Therefore, 

 2
* 1

*
( )

n

i
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X  is the MRE estimator of 2 , where *  must satisfy the following equation 
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Example 4.3: (Inverse Gaussian with zero drift) Let 1,..., nX X  be a random sample of IG( , )  with 
density 
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and consider the estimation of  . 1
0 1
( ) n

ii
X 


 X  has 1Ga( , )

2 2
n -distribution and is independent of 

Z  and hence 

1

* 1
*

( )

n

i
i

X









X  is the MRE estimator of  , where *  must satisfy the equation (4.7). 
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5   Bayes Estimation of Scale Parameters 

In the section, we consider the Bayesian estimation of the scale parameter   in a subclass of one-

parameter exponential families in which the complete sufficient statistic 0( ) X  has G( , )
2
 -

distribution, where 0  , 0   are known. 

Assume that the conjugate family of prior distributions for 1


  is the family of Gamma 

distribution Ga( , )  . Now, the posterior distribution of   is 0Ga( , (x))      and the Bayes 
estimate of   is a function (x)  which maximizes the function 

 

( 1)( 1)
0( ( ))1 ( 1) 1 10
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     XX
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Hence, the maximized   must satisfy the following integral equation, 

 
( 1) ( 1)

0 0(2 a (x)) (a (x))

0 0
d d

a ae eae e e
                  

            (5.1) 

So all estimators satisfying (5.1) are also Bayes estimators.	
Example 5.1: (Fisher Nile’s problem) The classical example of an ancillary statistic is known as the 
problem of Nile, originally formulated by Fisher [1]. Assume that X  and Y  are two positive valued 
random variables with the joint density function 

 

1( )
( , ; ) ; 0, 0, 0

x y
f x y e x y


 

 
       

and that ( , ) , 1,...,i iX Y i n  is a random sample of n paired observation on ( , ).X Y  Let 
1

1 ,
n

i
i

X X
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1

1 ,
n

i
i

Y Y
n 

  ,YT u XY
X

  . T  is the MLE of   and the pair ( , )T U  is a jointly sufficient, but 

not complete statistics for   and U  is ancillary. Consider a nonrandomized rule ( , )T U  based on the 
sufficient statistic ( , )X Y  which is equivariant under the transformation 

 
0

; 010

cz X
c

Y
c



               

  

For ( , )T U  to be scale equivariant, we must have 
 ( , ) (c , ) ; 0c T U T U c      (5.2) 
Following Lehman [3] a necessary and sufficient condition for an estimator   to be scale equivariant is 
that it is of the form 0Z  , where 0  satisfies (5.2), hence 0 T  , ( )Z U . We see that all the 
scale equivariant estimators ( , )T U  must have the form 
 ( , ) ( )T U T U    (5.3) 

using the loss function (1.2) and the fact that the joint distribution of ,UT


 
 
 

 is independent of  , 

and we can evaluate the risk at 1  . Hence 

 
( ( ) 1)1 ( ( ) 1)( , ( )) [ (1 ) | ]

a T Ua T U e
UR T U E E e U

 
      

It follows that ( , ( ( ))R T U   is minimized by minimizing the inner expectation. Hence, the minimum 
risk scale equivariant estimator is *ˆ ( )MRE T U  , where *( )U  must satisfy the following integral 
equation 
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where we use the fact that the joint density function of (T, U) is g(t,u), when 1t  , and [2] 
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For deriving the Bayes estimator of  , let us consider the Inverted Gamma distribution as a prior 
distribution 

 , 1
( ) ; 0 , 0.

( )
e  

  

   
 




  


  

Therefore the unique Bayes estimator B  which is admissible under the loss (1.2) must satisfy the 
following integral equation 

 

( 1) ( 1)1 1(2 a ) ( ) (a ) ( )

0 0
d d

a aB B
B B

u uu t e u t eat te e e
             

              (5.5) 

Note that ˆ ˆ
MRE B  , whenever 0  , 0  . This means that when the loss function is scale 

invariant loss (1.2), then M̂RE  is a generalized Byes rule against the scale invariant improper prior 
1( ) ; 0  


   and is therefore minimax. 
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