N. Sanjari Farsipour

Department of Statistics, Faculty of Mathematical sciences, Alzahra University, Tehran, Iran Email: sanjari_n@yahoo.com

Abstract. In this paper we consider the estimation of parameters under a bounded asymmetric loss function. The Bayes and invariant estimator of location and scale parameters in the presence and absence of a nuisance parameter is considered. Some examples in this regard are included.

Keywords: Bayes estimation; invariance; location parameter; scale parameter; bounded Asymmetric loss.

1 Introduction

In the literature, the estimation of a parameter is usually considered when the loss is squared error or in general any convex and symmetric function. The quadratic loss function has been criticized by some researches (e.g., [4], [5], [6] and [7]). The proposed loss function is

$$L(\delta, \theta) = k \{ 1 - e^{b\{1 + a(\delta - \theta) - e^{a(\delta - \theta)}\}} \}$$

$$(1.1)$$

where $a \neq 0$ determines the shape of the loss function, b > 0 serves to scale the loss and k > 0 is the maximum loss parameter. The general form of the loss function is illustrated in Figure 1. This is obviously a bounded asymmetric loss function.

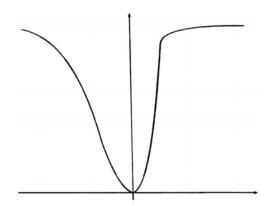


Figure 1. The loss function (1.1) for a=1.

In this paper, we first study the problem of estimation of a location parameter, using the loss function (1.1). In section 2 we introduce the best location-invariant estimator of θ under the loss (1.1). In section 3, Bayesian estimation of the normal mean is obtained under the loss (1.1). Then we study the problem of estimation of a scale parameter, using the loss function

$$L(\delta,\tau) = k \{ 1 - e^{b \{1 + a \left(\frac{\delta}{\tau} - 1\right) - e^{a \left(\frac{\sigma}{\tau} - 1\right)} \}} \}$$
(1.2)

where $a \neq 0, b, k > 0$. The loss (1.2) is scale invariant and bounded. In section 4 we introduce the best invariant estimator of the scale parameter τ under the loss (1.2). Finally in section 5 we consider a

subclass of the exponential family and obtain the Bayes estimates of τ under the loss (1.2). Since the parameters b and k do not have any influence on our results, so without loss of generality we take b = k = 1 in the rest of the paper.

2 Best Location-Invariant Estimator

Let $\mathbf{X} = (X_1, ..., X_n)$ have a joint distribution with probability density $f(\mathbf{X} - \theta) = f(X_1 - \theta, ..., X_n - \theta)$ where f is known and θ is an unknown location parameter. The class of all location invariant estimators of a location parameter θ is of the form [3]

$$\delta(\mathbf{X}) = \delta_0(\mathbf{X}) - v(\mathbf{Y})$$

where δ_0 is any location-invariant estimator and $\mathbf{Y} = (Y_1, ..., Y_{n-1})$ with $Y_i = X_i - X_n$, i = 1, ..., n-1and the best location-invariant estimator δ^* of θ under the loss function(1.1), is $\delta^*(\mathbf{X}) = \delta_0(\mathbf{X}) - v^*(\mathbf{y})$, where $v^*(\mathbf{y})$ is a number which minimizes

$$E_{\theta=0}\left[1-e^{1+a\left(\delta_{0}(\mathbf{X})-v(\mathbf{y})\right)-e^{a\left(\delta_{0}(\mathbf{X})-v(\mathbf{y})\right)}}\mid\mathbf{Y}=\mathbf{y}\right]$$

(see [3]). Differentiating with respect to $v(\mathbf{y})$ and equating to zero, it can be seen that $v^*(\mathbf{y})$ must satisfy the following equation

$$E_{\theta=0}\left[\left(e^{a(\delta_{0}(\mathbf{X})-v^{*}(\mathbf{y}))}-1\right)e^{a(\delta_{0}(\mathbf{X})-v^{*}(\mathbf{y}))-e^{a(\delta_{0}(\mathbf{X})-v^{*}(\mathbf{y}))}} \mid \mathbf{Y}=\mathbf{y}\right]=0$$
(2.1)

Example 2.1: (normal mean) Let $X_1, ..., X_n$ be i.i.d. random variables having normal distribution with mean θ (real but unknown) and known variance σ^2 . If $\delta_0(\mathbf{X}) = \overline{X}$, it follows from Basu's theorem that $\delta_0(\mathbf{X})$ is independent of \mathbf{Y} and hence the best location-invariant estimator of θ is given by $\delta^*(\mathbf{X}) = \overline{X} - v^*$, when v^* is a number which satisfies (2.1), i.e.

$$\int_{-\infty}^{\infty} e^{-\frac{n}{2\sigma^2} (\mathbf{x} - \frac{2a\sigma^2}{n})^2 - e^{a\mathbf{x} - av^*}} dx = e^{av^* - \frac{a^2\sigma^2}{n}} \int_{-\infty}^{\infty} e^{-\frac{n}{2\sigma^2} (\mathbf{x} - \frac{a\sigma^2}{n})^2 - e^{a\mathbf{x} - av^*}} dx$$
(2.2)

So, we can find v^* by a numerical solution.

Example 2.2: (Uniform) Let $X_1, ..., X_n$ be i.i.d. according to the uniform distribution on $\left(\theta - \frac{\beta}{2}, \theta + \frac{\beta}{2}\right)$ where θ is real (but unknown) and $\beta(>0)$ is known. Taking $\delta_0(\mathbf{X}) = (X_{(1)} + X_{(2)})/2$ which is an invariant estimator of θ , the conditional distribution of $\delta_0(\mathbf{X})$ given $\mathbf{Y} = \mathbf{y}$ depends on \mathbf{y} only through differences $X_{(i)} - X_{(1)} = V_i, i = 2, ..., n$. Now, note that $\left(X_{(1)}, X_{(n)}\right)$ is a complete sufficient statistic for (θ, β) and is independent of $Z_i = \frac{X_{(i)} - X_{(1)}}{X_{(n)} - X_{(1)}}$, i = 2, ..., n - 1 for all θ, β by Basu's theorem. Hence $\left(X_{(1)}, X_{(n)}\right)$ and Z_i 's are independent for all θ and any given β . Also, note that the conditional distribution of $\delta_0(\mathbf{X})$ given Y_i 's which is equivalent to conditional distribution of $\delta_0(\mathbf{X})$ given $X_{(n)} - X_{(1)}$ and Z_i 's depends only on $X_{(n)} - X_{(1)}$. On the other hand, the conditional distribution of $\delta_0(\mathbf{X})$ given $W = X_{(n)} - X_{(1)}$ at $\theta = 0$ is of the form

$$f_{\boldsymbol{\delta}_{\boldsymbol{0}}(\mathbf{X})\mid W=\ \boldsymbol{w}}(t) = \frac{1}{\boldsymbol{\beta}-\boldsymbol{w}} \quad \text{ if } \mid t \mid < \frac{\boldsymbol{\beta}-\boldsymbol{w}}{2}; \ \boldsymbol{\beta} > \boldsymbol{w}$$

Journal of Advanced Statistics, Vol. 1, No. 2, June 2016 https://dx.doi.org/10.22606/jas.2016.12002

Hence the estimator $\delta^*(\mathbf{X}) = \frac{X_{(1)} + X_{(n)}}{2} - v^*$ is the MRE estimator of θ , if v^* satisfies (2.1), which simplifies to

$$e^{-a(\frac{\beta-w}{2}+v^*)-e^{-a(\frac{\beta-w}{2}+v^*)}} - e^{a(\frac{\beta-w}{2}-v^*)-e^{a(\frac{\beta-w}{2}-v^*)}} = (1+a)e^{-e^{a(\frac{\beta-w}{2}-v^*)}} - (1+a)e^{-e^{-a(\frac{\beta-w}{2}+v^*)}}$$
(2.3)

So, we can find v^* by a numerical solution.

Example 2.3: (Exponential distribution) Let X_1, \ldots, X_n be *i.i.d.* random variables with the density

$$f_{\theta}(x) = \frac{1}{\beta} e^{-(x-\theta)/\beta} \qquad \qquad x \ge \theta$$

where $\theta \in R$ is unknown and $\beta(>0)$ is known. $\delta_0(\mathbf{X}) = X_{(1)}$ is an equivariant estimator and by the Basu's theorem, it is independent of \mathbf{Y} . Therefore, $\delta^*(\mathbf{X}) = X_{(1)} - \nu^*$ is the MRE estimator of θ , if ν^* satisfies (2.1), i.e. satisfies

$$\int_{0}^{e^{-av^{*}}} x^{1-\frac{n}{a\beta}} e^{-x} dx = e^{\frac{nv^{*}}{\beta}} \int_{0}^{e^{-av^{*}}} x^{-\frac{n}{a\beta}} e^{-x} dx \qquad ; a < 0$$
$$\int_{e^{-av^{*}}}^{\infty} x^{1-\frac{n}{a\beta}} e^{-x} dx = e^{\frac{nv^{*}}{\beta}} \int_{e^{-av^{*}}}^{\infty} x^{-\frac{n}{a\beta}} e^{-x} dx \qquad ; a > 0$$

which simplifies to

$$\sum_{r=0}^{1-\frac{n}{a\beta}} \frac{(1-\frac{n}{a\beta})!}{(1-\frac{n}{a\beta}-r)!} e^{av^*(1-\frac{n}{a\beta}-r)} = e^{\frac{av^*}{\beta}} \sum_{r=0}^{-\frac{n}{a\beta}} \frac{(-\frac{n}{a\beta})!}{(-\frac{n}{a\beta}-r)!} e^{av^*(\frac{n}{a\beta}+r)}$$
(2.4)

So, we can find ν^* by a numerical solution.

3 Bayes Estimation of the Normal Mean

Let $X_1, ..., X_n$ be a random sample of size n from a normal distribution with mean θ (unknown parameter) and variance σ^2 (known parameter). In this section we consider Bayesian estimation of the parameter θ using the loss function (1.1).

If the conjugate family of prior distributions for θ is the family normal distributions $N(\mu, b^2)$, then the posterior distribution of θ is N(m, v) where

$$m = \frac{\frac{nx}{\sigma^{2}} + \frac{\mu}{b^{2}}}{\frac{n}{\sigma^{2}} + \frac{1}{b^{2}}} \qquad \& \qquad \upsilon = \frac{1}{\frac{n}{\sigma^{2}} + \frac{1}{b^{2}}},$$

and the posterior risk of an estimator $\delta(\mathbf{X})$ under the loss function (1.1) is

$$\left\{1 - E\left[e^{1+a\left(\theta - \delta(\mathbf{X})\right) - e^{a\left(\theta - \delta(\mathbf{X})\right)}} \left|\mathbf{X}\right]\right\} = 1 - \int_{-\infty}^{\infty} e^{1+a\left(\theta - \delta(\mathbf{X})\right) - e^{a\left(\theta - \delta(\mathbf{X})\right)}} \frac{1}{\sqrt{n\pi\upsilon}} e^{-\frac{1}{2\upsilon}\left(\theta - m\right)^{2}} d\theta$$

so, $\delta_{\scriptscriptstyle B}(\mathbf{X})$ is the solution of the following integral equation

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2\nu} \left(\theta - 2\,a\,\nu - m\right)^2 - e^{a\left(\theta - \delta_B\right)}} \,\mathrm{d}\,\theta = e^{a\left(\delta_B - a\,\nu - m\right)} \int_{-\infty}^{\infty} e^{-\frac{1}{2\nu} \left(\theta - a\,\nu - m\right)^2 - e^{a\left(\theta - \delta_B\right)}} \,\mathrm{d}\,\theta \tag{3.1}$$

Hence, we can find $\delta_{\scriptscriptstyle B}$ from the equation (3.1) by a numerical solution.

Also, notice that the generalized Bayes estimator relative to a diffuse prior, $\pi(\theta) = 1$ for all $\theta \in \mathbb{R}$ can be found by letting $b \to \infty$, i.e. $\upsilon \to \frac{\sigma^2}{n}$.

In the presence of a nuisance parameter σ^2 , i.e. when σ^2 is unknown, a modified loss function is as follows

$$L(\delta;\theta,\sigma) = 1 - e^{1 + a\left(\frac{\delta - \theta}{\sigma}\right) - e^{a\left(\frac{\delta - \theta}{\sigma}\right)}}$$
(3.2)

 $a \neq 0~$ which is a location scale invariant loss function.

In this position, we obtain a class of Bayes estimators of the location parameter θ . Let $\tau = \frac{1}{\sigma^2}$ be the precision which is unknown and suppose that conditional on τ , θ has a normal distribution with mean μ and variance $1/\lambda\tau$, where $\mu \in R, \lambda > 0$ are both known constants, i.e., $\theta \mid \tau \sim N\left(\mu, \frac{1}{\lambda\tau}\right)$ and τ has a *p.d.f* g(τ). In this case, one can easily verify that

$$\pi\left(heta\left|\mathbf{x}, au
ight) \propto e^{-rac{r}{2}\sum\limits_{i=1}^{n}(x_i- heta)^2}e^{-rac{r\lambda}{2}(heta-\mu)^2}$$

Or

$$\pi\left(\theta \,\middle| \mathbf{x}, \tau\right) \propto \exp\left\{-\frac{\tau}{2} \left(n + \lambda\right) \left[\theta - \left(\frac{n}{n + \lambda} \,\overline{x} + \frac{\lambda}{n + \lambda} \,\mu\right)\right]^2\right\}$$

It is clear that $\theta \mid \mathbf{x}, \tau \sim N\left(\eta, \frac{1}{\tau(n+\lambda)}\right)$, with $\eta = \frac{n}{n+\lambda}\overline{x} + \frac{\lambda}{n+\lambda}\mu$. To obtain the Bayes estimate of θ for our problem, it is enough to find an estimate $\delta(x)$ which minimizes $E\left[L\left(\delta(\mathbf{X}); \theta, \tau\right) \middle| \mathbf{X}, \tau\right]$ for any \mathbf{X}, τ . This expectation is under the distribution of $\theta \middle| \mathbf{X}, \tau$. So δ_B is the solution of the following integral equation

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{a\sqrt{\tau}\left(\theta-\delta_{B}\right)-e^{a\sqrt{\tau}\left(\theta-\delta_{B}\right)-\frac{r}{2}(n+\lambda)\left(\theta-\eta\right)^{2}}} g(\tau) \,\mathrm{d}\,\theta \,\mathrm{d}\,\tau = \int_{0}^{\infty} \int_{-\infty}^{\infty} e^{2a\sqrt{\tau}\left(\theta-\delta_{B}\right)-e^{a\sqrt{\tau}\left(\theta-\delta_{B}\right)-\frac{r}{2}(n+\lambda)\left(\theta-\eta\right)^{2}}} g(\tau) \,\mathrm{d}\,\theta \,\mathrm{d}\,\tau \quad (3.3)$$

which can be solved numerically.

4 Best Scale Invariant Estimator

Consider a random sample $X_1, ..., X_n$ from $\frac{1}{\tau} f(\frac{\mathbf{x}}{\tau})$, where f is a known function, and τ is an unknown scale parameter. It is desired to estimate τ under the loss function (1.2). The class of all scale-invariant estimators of τ is of the form

$$\delta(\mathbf{X}) = \delta_0(\mathbf{X}) / W(\mathbf{Z})$$

where δ_0 is any scale-invariant estimator, $\mathbf{X} = (X_1, ..., X_n)$, and $\mathbf{Z} = (Z_1, ..., Z_n)$ with $Z_i = \frac{X_i}{X_n}$; $i = 1, ..., n - 1, Z_n = \frac{X_n}{|\mathbf{X}|}$. Moreover the best scale-invariant (minimum risk equivariant (MRE)) estimator

 δ^* of τ is given by

$$\delta^*(\mathbf{X}) = \delta_0(\mathbf{X}) / w^*(\mathbf{Z})$$

where $w^{*}(\mathbf{Z})$ is a function of \mathbf{Z} which maximizes

$$E_{\tau=1}\left[e^{1+a(\frac{\delta_{0}(\mathbf{X})}{\mathbf{w}(\mathbf{Z})}-1)-e^{a\left(\frac{\delta_{0}(\mathbf{X})}{\mathbf{w}(\mathbf{Z})}-1\right)}}|\mathbf{Z}=\mathbf{z}\right]$$
(4.1)

In the presence of a location parameter as a nuisance parameter, the MRE estimator of $\,\tau\,$ is of the form

$$\delta^*(\mathbf{X}) = \delta_0(\mathbf{Y}) / w^*(\mathbf{Z})$$

where $\delta_0(\mathbf{Y})$ is any finite risk scale-invariant estimator of τ , based on $\mathbf{Y} = (\mathbf{Y}_1, ..., \mathbf{Y}_{n-1})$, with $Y_i = X_i - X_n; i = 1, ..., n-1$, $\mathbf{Z} = (Z_1, ..., Z_{n-1}), Z_i = \frac{Y_i}{Y_{n-1}}; i = 1, ..., n-2$, and $Z_{n-1} = \frac{Y_{n-1}}{|Y_{n-1}|}$ and $w^*(\mathbf{Z})$ is any function of \mathbf{Z} maximizing

$$E_{\tau=1}\left[e^{1+a\left(\frac{\delta_{0}(\mathbf{Y})}{\mathbf{w}(\mathbf{Z})}-1\right)-e^{a\left(\frac{\delta_{0}(\mathbf{Y})}{\mathbf{w}(\mathbf{Z})}-1\right)}}\left|\mathbf{Z}=\mathbf{z}\right]$$
(4.2)

In many cases, when $\tau = 1$, we can find an equivariant estimator $\delta_0(\mathbf{X})$ or $\delta_0(\mathbf{Y})$ which has the gamma distribution with known parameters ν, η and is independent of \mathbf{Z} .

It follows that
$$\delta^* = \frac{\delta_0}{w^*}$$
 is the MRE estimator of τ where w^* is a number which maximizes

$$g(w) = \int_0^\infty e^{1+a(\frac{x}{w}-1)-e^{a(\frac{x}{w}-1)}} \frac{\eta^{\nu} x^{\nu-1}}{\Gamma(\nu)} e^{-\eta x} dx = \frac{\eta^{\nu}}{\Gamma(\nu)} e^{1-a} \int_0^\infty x^{\nu-1} e^{x(\frac{a}{w}-\eta)-e^{a(\frac{x}{w}-1)}} dx \quad (4.3)$$

and hence w^* must satisfy the following equation

$$\int_{0}^{\infty} x^{\nu-1} e^{\left(\frac{2a}{w} - \eta\right)x - e^{\frac{ax}{w} - a}} dx = e^{a} \int_{0}^{\infty} x^{\nu} e^{\left(\frac{a}{w} - \eta\right)x - e^{\frac{ax}{w} - a}} dx$$
(4.4)

Theorem 4.1: If $\delta_0(\mathbf{X})$ is a finite risk scale-invariant estimator of τ , which has the gamma distribution with known parameters ν, η , when $\tau = 1$. Then the MRE (minimum risk equivariant) estimator of τ under the loss function (1.2) is $\delta^*(\mathbf{X}) = \frac{\delta_0(\mathbf{X})}{w^*}$, where w^* must satisfy the equation (4.4).

Example 4.1: (Exponential) Let $X_1, ..., X_n$ be a random sample from $E(0, \lambda)$ with density $\frac{1}{\lambda}e^{-\frac{x}{\lambda}}$; x > 0, and consider the estimation of λ under the loss (1.2). $\delta_0(\mathbf{X}) = \sum_{i=1}^n X_i$ is an equivariant estimator which has Ga(n,1)-distribution when $\lambda = 1$ and it follows from the Basu's theorem that δ_0 is independent of \mathbf{Z} , hence the MRE estimator of λ under the loss (1.2) is $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^n X_i}{\omega^*}$, where ω^* must satisfy the following equation

$$\int_{0}^{\infty} x^{n-1} e^{\left(\frac{2a}{w}-1\right)x - e^{\frac{2a}{w}-a}} dx = e^{a} \int_{0}^{\infty} x^{n} e^{\left(\frac{a}{w}-1\right)x - e^{\frac{2a}{w}-a}} dx$$
(4.5)

Example 4.1: (Continued) Suppose that $X_1, ..., X_n$ is a random sample of $E(\theta, \lambda)$ with density $\frac{1}{\lambda}e^{-(x-\theta)/\lambda}$; $x > \theta$, and consider the estimation of λ when θ is unknown. We know that $\left(X_{(1)}, \sum_{i=1}^{n} (X_i - X_{(1)})\right)$ is a complete sufficient statistics for (θ, λ) . It follows that $\delta_0(\mathbf{Y}) = 2\sum_{i=1}^{n} (X_i - X_{(1)})$ has $\operatorname{Ga}(n-1,\frac{1}{2})$ -distribution, when $\lambda = 1$, and from the Basu's theorem $\delta_0(\mathbf{Y})$ is independent of \mathbf{Z} and hence $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^{n} (X_i - X_{(1)})}{\omega^*}$ is the MRE estimator of λ under

the loss (1.2), where ω^* must satisfy the following equation

$$\int_{0}^{\infty} x^{n-2} e^{\left(\frac{2a}{w} - \frac{1}{2}\right)x - e^{\frac{ax}{w} - a}} dx = e^{a} \int_{0}^{\infty} x^{n-1} e^{\left(\frac{a}{w} - \frac{1}{2}\right)x - e^{\frac{ax}{w} - a}} dx$$
(4.6)

Example 4.2: (Normal variance) Let $X_1, ..., X_n$ be a random sample of $N(0, \sigma^2)$ and consider the estimation of σ^2 . $\delta_0(\mathbf{X}) = \sum_{i=1}^n X_i^2$ is a finite risk scale-invariant estimator of σ^2 and is independent of σ^2 .

 \mathbf{Z} , and when $\sigma^2 = 1$, $\delta_0(\mathbf{X})$ has $\operatorname{Ga}(\frac{n}{2}, \frac{1}{2})$ -distribution and hence $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^{i=1} X_i^2}{\omega^*}$ is the MRE estimator of σ^2 , where ω^* must satisfy the following equation

$$\int_{0}^{\infty} x^{\frac{n}{2}-1} e^{(\frac{2a}{*}-\frac{1}{2})x-e^{\frac{a}{w}^{*}-a}} dx = e^{a} \int_{0}^{\infty} x^{\frac{n}{2}} e^{(\frac{a}{*}-\frac{1}{2})-e^{\frac{a}{w}^{*}-a}} dx$$
(4.7)

Example 4.2: (Continued) Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, with a nuisance parameter μ . In estimating σ^2 using the loss (1.2), it follows that $\delta_0(\mathbf{X}) = \sum_{i=1}^n (X_i - \overline{X})^2$ is independent of \mathbf{Z} , and when $\sigma^2 = 1$, the distribution of $\delta_0(\mathbf{Y})$ is $\operatorname{Ga}(\frac{n-1}{2}, \frac{1}{2})$. Therefore,

 $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}{\omega^*} \text{ is the MRE estimator of } \sigma^2, \text{ where } \omega^* \text{ must satisfy the following equation}$

$$\int_{0}^{\infty} x^{\frac{n-3}{2}} e^{\left(\frac{2a}{*} - \frac{1}{2}\right)x - e^{\overline{w}^{*-a}}} \, \mathrm{d} \, x = e^{a} \int_{0}^{\infty} x^{\frac{n-1}{2}} e^{\left(\frac{a}{*} - \frac{1}{2}\right)x - e^{\overline{w}^{*-a}}} \, \mathrm{d} \, x \tag{4.8}$$

Example 4.3: (Inverse Gaussian with zero drift) Let $X_1, ..., X_n$ be a random sample of $IG(\infty, \lambda)$ with density

$$f(x \mid \lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{\frac{1}{2}} e^{-\frac{\lambda}{2x}} \quad \text{if } x > 0$$

and consider the estimation of λ . $\delta_0(\mathbf{X}) = \sum_{i=1}^n X_i^{-1}$ has $\operatorname{Ga}(\frac{n}{2}, \frac{1}{2})$ -distribution and is independent of

Z and hence $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^{n} X_i^{-1}}{\omega^*}$ is the MRE estimator of λ , where ω^* must satisfy the equation (4.7).

5 Bayes Estimation of Scale Parameters

In the section, we consider the Bayesian estimation of the scale parameter τ in a subclass of oneparameter exponential families in which the complete sufficient statistic $\delta_0(\mathbf{X})$ has $G(\nu, \frac{\eta}{2})$ distribution, where $\nu > 0$, $\eta > 0$ are known.

Assume that the conjugate family of prior distributions for $\beta = \frac{1}{\tau}$ is the family of Gamma distribution $\operatorname{Ga}(\alpha,\xi)$. Now, the posterior distribution of β is $\operatorname{Ga}(\nu + \alpha,\xi + \eta\delta_0(\mathbf{x}))$ and the Bayes estimate of τ is a function $\delta(\mathbf{x})$ which maximizes the function

$$E\left[e^{1+a\left(\beta\,\delta-1\right)-e^{a\left(\beta\,\delta-1\right)}}\left|\mathbf{X}\right]=\frac{\left(\eta\delta_{0}(\mathbf{X})+\xi\right)^{\nu+\alpha}}{\Gamma(\nu+\alpha)}e^{1-a}\int_{0}^{\infty}\beta^{\nu+\alpha-1}e^{\left(a\,\delta-\xi-\eta_{0}(\mathbf{X})\right)\beta-e^{a\left(\beta\,\delta-1\right)}}\,\mathrm{d}\,\beta$$

Hence, the maximized δ must satisfy the following integral equation,

$$\int_{0}^{\infty} \boldsymbol{\beta}^{\nu+\alpha} e^{(2a\,\delta-\xi-\eta\,\,\delta_{0}(\mathbf{x}))\,\boldsymbol{\beta}-e^{a(\boldsymbol{\beta}\,\delta-1)}} \,\mathrm{d}\,\boldsymbol{\beta} = e^{a} \int_{0}^{\infty} \boldsymbol{\beta}^{\nu+\alpha} e^{(a\,\delta-\xi-\eta\,\,\delta_{0}(\mathbf{x}))\,\boldsymbol{\beta}-e^{a(\boldsymbol{\beta}\,\delta-1)}} \,\mathrm{d}\,\boldsymbol{\beta}$$
(5.1)

So all estimators satisfying (5.1) are also Bayes estimators.

Example 5.1: (Fisher Nile's problem) The classical example of an ancillary statistic is known as the problem of Nile, originally formulated by Fisher [1]. Assume that X and Y are two positive valued random variables with the joint density function

$$f(x,y;\tau) = e^{-(\tau x + \frac{1}{\tau}y)} \qquad ; x > 0, y > 0, \tau > 0$$

and that (X_i, Y_i) , i = 1, ..., n is a random sample of n paired observation on (X, Y). Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

 $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, T = \sqrt{\frac{\overline{Y}}{\overline{X}}}, u = \sqrt{\overline{X}\overline{Y}}. T \text{ is the MLE of } \tau \text{ and the pair } (T,U) \text{ is a jointly sufficient, but not complete statistics for } \tau \text{ and } U \text{ is ancillary. Consider a nonrandomized rule } \delta(T,U) \text{ based on the sufficient statistic } (\overline{X}, \overline{Y}) \text{ which is equivariant under the transformation}}$

$$\begin{pmatrix} z \\ \omega \end{pmatrix} = \begin{pmatrix} c & 0 \\ 0 & \frac{1}{c} \end{pmatrix} \begin{pmatrix} \overline{X} \\ \overline{Y} \end{pmatrix} \quad ; \ c > 0$$

For $\delta(T,U)$ to be scale equivariant, we must have

$$\delta(T,U) = \delta(cT,U) \quad ; \quad \forall c > 0$$
(5.2)

Following Lehman [3] a necessary and sufficient condition for an estimator δ to be scale equivariant is that it is of the form $\delta = \delta_0 Z$, where δ_0 satisfies (5.2), hence $\delta_0 = T$, $Z = \phi(U)$. We see that all the scale equivariant estimators $\delta(T,U)$ must have the form

$$\delta(T,U) = T\phi(U) \tag{5.3}$$

using the loss function (1.2) and the fact that the joint distribution of $\left(\frac{T}{\tau}, \mathbf{U}\right)$ is independent of τ , and we can evaluate the risk at $\tau = 1$. Hence

$$R(\tau, T\phi(U)) = E_{U}[E(1 - e^{1 + a (T\phi(U) - 1) - e^{a (T\phi(U) - 1)}}) | U]$$

It follows that $R(\tau, T(\phi(U)))$ is minimized by minimizing the inner expectation. Hence, the minimum risk scale equivariant estimator is $\hat{\tau}_{_{MRE}} = T\phi^*(U)$, where $\phi^*(U)$ must satisfy the following integral equation

$$\int_{0}^{\infty} e^{(2a\phi^{*}(\mathbf{u})-\mathbf{u})t - \frac{u}{t} - e^{a(t\phi^{*}(u)-1)}} dt = e^{a} \int_{0}^{\infty} e^{(a\phi^{*}(\mathbf{u})-\mathbf{u})t - \frac{u}{t} - e^{a(t\phi^{*}(u)-1)}} dt$$
(5.4)

where we use the fact that the joint density function of (T, U) is g(t,u), when t = 1, and [2]

$$g(t, \frac{u}{\tau}) = \begin{cases} \frac{2e^{-n u(\frac{t}{\tau} + \frac{\tau}{t})}u^{2n-1}}{n^{-2n}[(n-1)!]^2 t} & \text{if } t > 0, u > 0\\ 0 & \text{otherwise.} \end{cases}$$

For deriving the Bayes estimator of τ , let us consider the Inverted Gamma distribution as a prior distribution

$$\pi_{\alpha,\lambda}(\tau) = \frac{\lambda^{\alpha} e^{-\lambda/\tau}}{\tau^{\alpha+1} \Gamma(\alpha)} \quad ; \quad \tau > 0 \ , \ \lambda > 0.$$

Therefore the unique Bayes estimator $\delta_{\scriptscriptstyle B}$ which is admissible under the loss (1.2) must satisfy the following integral equation

$$\int_{0}^{\infty} \tau^{-\alpha} e^{\left(2 \operatorname{a} \delta_{B} - \frac{u}{t}\right)\tau - (\lambda + u t)\frac{1}{\tau} - e^{a(\tau \delta_{B} - 1)}} \operatorname{d} \tau = e^{a} \int_{0}^{\infty} \tau^{-\alpha} e^{\left(\operatorname{a} \delta_{B} - \frac{u}{t}\right)\tau - (\lambda + u t)\frac{1}{\tau} - e^{a(\tau \delta_{B} - 1)}} \operatorname{d} \tau \qquad (5.5)$$

Note that $\hat{\tau}_{_{MRE}} = \hat{\tau}_{_B}$, whenever $\alpha \to 0$, $\lambda \to 0$. This means that when the loss function is scale invariant loss (1.2), then $\hat{\tau}_{_{MRE}}$ is a generalized Byes rule against the scale invariant improper prior $\pi(\tau) = \frac{1}{\tau}$; $\tau > 0$ and is therefore minimax.

References

- 1. Fisher, R. A. (1959): Statistical Method and Scientific Inference. London, Oliver and Boyd.
- Joshi, s. and Nabar, S. (1987): Estimation of the Parameter in the Problem of the Nile. Commun. Statist. Theory Meth. 16, 3149-3156.
- 3. Lehman, E.L. and Casella, G. (1998): Theory of Point Estimation. Springer-Varlag New York, Inc.
- Leon, R. V. and Wu, C.F.G. (1992): A Theory of Performance Measure in Parameter Design. Statist. Sinica, 2(2), 335-357.
- 5. Tribus, M. and Szonya, G. (1989): An Alternate View of the Taguchi Approach. Quality progress, May, 46-52.
- Varian, H. R. (1975): A Bayesian Approach to Real Assessment. In: Studies in Bayesian Econometric and Statistics in Honor of Leonard J. Savage, eds. S.E. Fienberg and A. Zellner. North Holland, Amesterdam, 195-208.
- Zellner, A. (1986): Bayesian Estimation and Prediction Using Asymmetric Loss Function. J. Amer Statist. Assoc., 81,446-451.