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Abstract The purpose of survival analysis is to model the underlying distribution of the failure
time variable and to assess the dependence of the failure time variable on independent variables. In
this paper, we explored PHREG procedure for different models using Bayesian approach. PHREG
procedure not only fits COX model but also allows us to fit a piecewise exponential model. The
Bayesian analysis treats model parameters as random variables and the inference about these
parameters is based on posterior distribution of the parameters. A posterior distribution is a
weighted likelihood function of the data with a prior distribution of the parameters using the Bayes’
theorem. Generally, for model regression coefficients, normal or uniform prior distributions are used
in PHREG procedure. In addition to this, one may specify gamma or improper prior distribution
for the scale or variance parameters as well as for hazard parameters in piecewise exponential model.
PHREG procedure have been demonstrated with application to real life dataset. Bayesian analysis
with PHREG procedure and piecewise constant Bayesian hazard model is also explored along with
diagnostic test.
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1 Introduction

The term Survival analysis is used predominantly in biomedical sciences where the interest is in observing
time to death of either patient or laboratory animals. An intrinsic characteristic of survival data is the
possibility for censoring of observations, that is, the actual time until the event is not observed. Such
censoring can arise due to withdrawal from the experiment or termination of the experiment. The time
elapsed between enrolment in the study and experiencing one of the events is referred to as patient’s
survival time. Survival analysis data cannot be analyzed by ignoring censored observations. Therefore, the
analysis is carried out using censored as well as uncensored observations. In literature, many censoring
situations have been discussed by Kalbfleisch and Prentice [1].

In SAS, there are many procedures for analyzing survival data such as LIFEREG, LIFETEST and
PHREG. PROC LIFEREG is a parametric procedure of regression analysis which models the distribution
of survival time with a set of covariates. The PROC LIFETEST procedure deals with nonparametric
regression for estimating the survival function for comparing the underlying survival curves of two or
more samples. Cox proportional hazards model based on semi-parametric approach can be explored by
using PROC PHREG procedure.

In this paper, the PHREG procedure for different models using Bayesian approach is discussed. This
procedure also allows us to fit a piecewise exponential model. For some basic concepts of Bayesian analysis
procedures one may refer to Ibrahim et al. [2], Gelman et al. [3], Gilks et al. [4].

Some basic definitions which are required to cary out PHREG procedure are given below.

Definition 1.1. Markov Chain Monte Carlo (MCMC) Method: The simulation method for
sampling from posterior distributions which computes posterior quantities of interest is called the Markov
Chain Monte Carlo (MCMC) method. In this method, each sample depends on the previous sample. A
Markov chain is a sequence of random variables for which the random variable θt depends on all previous
θs only through its immediate predecessor θt−1. Monte Carlo integration is mainly used to approximate
an expectation by using the Markov chain samples.

Definition 1.2. Gibbs Sampler: Gibbs sampling requires decomposing the joint posterior distribution
into full conditional distributions for each parameter in the model and then sampling from them. If the
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parameters are not dependent on each other, then the sampler is regarded as efficient and full conditional
distributions are easy to sample from. It may be noted that the conditional distributions can be easily
derived but it is not always possible to find an efficient way to sample from these conditional distributions.

Definition 1.3. Burn-in, Thinning and Markov Chain Samples: To discard the initial portion of
a Markov chain, so that the effect of initial values on the posterior inference is minimized, we use Burn-in
procedure. In practice, if the chain has reached its target distribution after ‘t’ iterations, then one can use
good samples for posterior inference by throwing out the early portion. The value of ‘t’ is the burn-in
number. The thinning number controls the thinning of the Markov chain samples.

Definition 1.4. Autocorrelations: The sample autocovariance function of lag h for {θti} is defined by

γ̂(h) = 1
n− h

∑n−h

t=1
(θt+hi − θ̄i), 0 ≤ h < n

The sample autocorrelation of lag h is defined in terms of the sample autocovariance function as

ρ̂(h) = γ̂(h)
γ̂(0) , |h| < n

Definition 1.5. Effective Sample Size: We can use autocorrelation and trace plots to examine the
mixing of a Markov chain. A closely related measure of mixing is the effective sample size (ESS). It is
defined as follows:

ESS = n

τ
= n

1 + 2
∑∞
k=1 ρk(θ)

where n is the total sample size and ρk(θ) is the autocorrelation of lag k for θ. The quantity τ is referred
to as the autocorrelation time.

Section 2 presents an overview of PHREG procedure with application to real life dataset. Bayesian
analysis with PHREG procedure along with diagnostic test is discussed in Section 3. Section 4 includes
piecewise constant Bayesian hazard model with practical example.

2 PHREG Procedure

The PHREG procedure performs regression analysis of survival data based on the Cox proportional
hazards model. Cox’s Semi-parametric model is widely used in the analysis of survival data to explain
the effect of explanatory variables on hazard rates. The survival time of each member of a population is
assumed to follow its own hazard function, hi(t), expressed as

hi(t) = hi(t : Zi) = h0(t) exp(Z ′iβ)

where h0(t) is an arbitrary and unspecified baseline hazard function, Zi is the vector of explanatory
variables for the ith individual and β is the vector of unknown regression parameters associated with the
explanatory variables. The survivor function can be expressed as

S(t : Zi) = [S0(t)]exp(Z′iβ)

where S0(t) = exp
(
−
∫ t

0 h0(u)du
)
is the baseline survivor function. To estimate β, Cox [5][6] introduced

the partial likelihood function, which eliminates the unknown baseline hazard h0(t) and accounts for
censored survival times.

The PHREG procedure provides four selection methods viz. forward selection, backward elimination,
stepwise selection, and best subset selection. The best subset selection method is based on the likelihood
score statistic. This method identifies a specified number of best models containing one, two or three
variables and so on, up to the single model containing all of the explanatory variables. The PHREG
procedure uses ODS Graphics to create graphs as part of its output.
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2.1 Post PK Glaucoma Analysis Using PHREG Procedure

The retrospective analysis of 233 patients who underwent optical penetrating keratoplasty (PK) and had
a minimum follow-up of 3 months, has been carried out using PHREG procedure. Data on post-operative
intra-ocular pressure (IOP) was recorded at 3, 6, 9, 12 and 18 months or more. All the patients were
followed up for post PK glaucoma and time in months was recorded (follow-up variable). There were
28 censored observations. Various risk factors including age, sex, indications for PK, type of surgical
procedures and additional surgical procedures performed have been included in the study. The censored
observations are marked “0”, if censored and “1”, if not censored. The data includes variables follow-up
period (in months), the status variable (the censoring indicator variable 0, if censored and 1 if not
censored) and the variable group (age≤40, coded as 0 and >40, as 1).

PROC PHREG fits Cox model by maximizing the partial likelihood and computes the base-line
survivor function by using the Breslow [7] estimate. Since there are only two groups and the null hypothesis
for no difference between the two groups is identical to the null hypothesis that the regression coefficient
for group is 0. Thus, the global null hypothesis is H0 : β = 0. The hazard ratio estimate is 1.472 which
implies that hazard function for group 1 is smaller than group 0. In other words, group 0 patients (age≤40)
have less chances of developing post PK glaucoma than those in group 1 (age>40). The analysis is shown
in Table 1 and survival curves in Fig. 1.

Table 1. The PHREG procedure.

The PHREG Procedure
Model Information

Data Set OUT.COX_DATA
Dependent Variable Followup
Censoring Variable status
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values
Percent

Total Event Censored Censored
233 205 28 12.02

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics
Without With

Criterion Covariates Covariates
-2 LOG L 1846.126 1839.565
AIC 1846.126 1841.565
SBC 1846.126 1844.888

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6.5606 1 0.0104
Score 6.3332 1 0.0118
Wald 6.2551 1 0.0124

Analysis of Maximum Likelihood Estimates
Parameter Standard

Parameter DF Estimate Error Chi-Square Pr > ChiSq Hazard Ratio
Group 1 0.38673 0.15463 6.2551 0.0124 1.472

Note that if there are no ties in the survival times, the likelihood score test in the COX regression
analysis is equivalent to the log-rank test.

3 Bayesian Analysis Using PHREG Procedure

Bayesian methods incorporate existing information (based on expert knowledge, past studies, and so on)
into your current data analysis. This existing information is represented by a prior distribution and the

40 Journal of Advanced Statistics, Vol. 1, No. 1, March 2016

JAS Copyright © 2016 Isaac Scientific Publishing



Figure 1. Comparison of two survival curves.

data likelihood is effectively weighted by the prior distribution as the data analysis results are computed.
The main outcomes of a Bayesian analysis are the posterior distributions of a model’s parameters, rather
than point estimates and their standard errors. Access to a model’s parameters posterior distributions
enables us to address scientific questions of interest directly. This happens since the model parameters
are estimated, it is easy to compute the posterior distributions for any functions of the parameters or any
quantities of interest. Some statisticians produce Bayesian analyses simply to operate in the Bayesian
framework. Before the current data are examined, the uncertainty about the parameters is judged by
the prior distribution. Multiplication of likelihood function with prior distribution leads to posterior
distribution of the parameter. Posterior distributions are used to carry out all inferences and modelling
procedures in Bayesian analysis.

The degree of belief in a random event is attributed to the Bayesian probability measures and these
measures are highly subjective. Since long, there has been a desire to obtain results that are objectively
valid. Within the Bayesian paradigm, this can be somewhat achieved by using prior distributions that have
a minimal impact on the posterior distribution. Such distributions are called objective or noninformative
priors, one may refer to DeGroot and Schervish [8] and Press [9]. One may also refer to Berger [10] and
Goldstein [11] for information about objective Bayesian versus subjective Bayesian analysis.

A prior π(θ) is noninformative if it has minimal impact on the posterior distribution of θ. The
noninformative priors are also called flat priors. In some cases, noninformative priors can lead to improper
posteriors. Moreover, noninformative priors are generally variant under transformation, that is, a prior
might be noninformative in one parameterization but not necessarily noninformative if a transformation
is applied.

If the prior distribution has an impact on posterior distribution and dominates the likelihood, then
it is called an informative prior. The power of the Bayesian method is based on the proper use of prior
distributions where the current information also includes the information gathered from pervious study,
past experience or expert opinion.

3.1 Diagnostic Test for Bayesian Procedure

The PHREG procedure’s Bayesian analysis capabilities enable us to do the following:

– fit a Cox proportional hazards model
– fit piecewise constant baseline hazard models (also known as piecewise exponential models)
– fit a superset of the Cox model, known as the multiplicative hazards model (also known as Anderson-

Gill model)
– estimate customized hazard ratios
– estimate the survival function

Journal of Advanced Statistics, Vol. 1, No. 1, March 2016 41

Copyright © 2016 Isaac Scientific Publishing JAS



– fit multinomial logit choice models for discrete data

The PHREG procedure supports the following priors

Parameter Prior
Regression coefficients Normal, uniform
Baseline hazards (original scale) Improper, uniform, gamma, independent gamma,

Auto Regressive AR(1)
Baseline hazards (log scale) Uniform, normal
Log-hazards and regression coefficients Joint multivariate normal

For a Cox model, the model parameters are the regression coefficients. For a piecewise exponential
model, the model parameters consist of the regression coefficients and the hazards or log-hazards.

The Geweke test [12] compares values in the early part of the Markov chain to those in the latter part
of the chain in order to detect failure of convergence.

The DIC is based on posterior density which means that it takes care of the prior information. It
is a model assessment tool and a Bayesian alternative to Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC). Calculation of the DIC in Monte Carlo Markov Chain method
is trivial and does not require maximization over the parameter space. However, the maximization is
required for AIC and BIC criteria. A smaller DIC indicates a better fit to the data set. pD is the effective
number of parameters which is equal to the difference between the measure of fit and the deviance
evaluated at the estimates.

3.2 PHREG Bayesian Procedure for Post PK Glaucoma

The partial likelihood of the COX model in PHREG procedure generates a chain of posterior distribution
samples by Gibbs sampler. The data considered in Section 2.1 has been analysed using Bayesian analysis.
Bayesian analysis in SAS can be invoked by BAYES statement. The SEED option is specified to maintain
reproducibility and the OUTPOST option saves the posterior distribution samples in a SAS dataset
for post processing. By default, a uniform distribution is assumed on the regression coefficient group.
However, if we use informative prior on regression coefficients, then COEFPRIOR option is required. The
model information is provided in Table 2 along with classical parameter estimates, coefficient prior and
fit statistics.

PHREG first fits the Cox model by maximizing the partial likelihood along with 95% confidence
intervals for regression parameters. Note that no prior is specified for regression coefficients and therefore
default uniform prior is used for regression coefficients. The “Fit Statistics” gives the information about
fitted model in terms of DIC (Deviance Information Criterion) and pD (effective number of parameters).
The summary statistics of posterior samples and posterior intervals are shown in Table 3.

We observe that in summary statistics, mean and standard deviation of the posterior samples are
comparable to MLE and its standard error, due to the use of uniform prior in Table 2. This suggests that
the posterior samples, using uniform prior for regression coefficients, produce the same results as given by
MLE technique.

PHREG provides diagnostics to access the convergence of the generated Markov Chain. Table 4 shows
three diagnostics:

– posterior autocorrelations at Lag1, Lag5, Lag10, Lag50
– Geweke diagnostics, and
– effective sample size (ESS).

From values in Table 4, it can be seen that posterior autocorrelations from Lag1 - Lag50 are almost
negligible and it can also be verified by autocorrelation plot shown in Fig. 2.

Trace plots of samples versus the simulation index can be useful in assessing convergence and also
shows that the chain is mixing well. It may be noted that if the chain does not converge to its stationary
distribution, then there will be long burn-in period. One can observe from a trace plot that there

42 Journal of Advanced Statistics, Vol. 1, No. 1, March 2016

JAS Copyright © 2016 Isaac Scientific Publishing



Table 2. Model information for PHREG procedure.

The PHREG Procedure
Model Information

Uniform Prior for Regression Coefficients

Data Set OUT.COX_DATA
Dependent Variable Followup
Censoring Variable status
Censoring Value(s) 0
Model Cox
Ties Handling BRESLOW
Burn-In Size 2000
MC Sample Size 10000
Thinning 1

Maximum Likelihood Estimates
Standard

Parameter DF Estimate Error 95% Confidence Limits
Group 1 0.3867 0.1546 0.0837 0.6898

Fit Statistics

DIC (smaller is better) 1841.538
pD (Effective Number of Parameters) 0.986

Table 3. Summary statistics.

The PHREG Procedure
Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
Group 10000 0.3898 0.1538 0.2870 0.3898 0.4913

Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD* Interval
Group 0.050 0.0874 0.6884 0.0904 0.6898

*HPD: Highest Posterior Density

Table 4. Convergence diagnostics and mean procedure.

The PHREG Procedure

Bayesian Analysis
Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50
Group -0.0062 0.0024 -0.0056 0.0104

Geweke Diagnostics
Parameter z Pr > |z|
Group 0.2149 0.8298

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency
Group 10000.0 1.0000 1.0000

P(hazard(group 1) < hazard(group 0))

The Means Procedure
Analysis Variable : Indictor Group < 0

N Mean
1000 0.982
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Figure 2. Diagnostic plots.

is a relatively constant mean and variance in case of stationarity. Fig. 2 displays the trace plot, the
autocorrelation function plot and posterior density plot generated by Markov Chain.

On the basis of Fig. 2, we conclude that

– Markov Chain (MC) has reached convergence
– MC has reached stationarity as the distribution of points is not changing as the chain progresses
– the burn-in size is 2000 which means that the initial 2000 observations have been discarded
– trace plot is perfect and the centre of the chain is around 0.4 with small fluctuations which indicates

that the MC has reached the right distribution
– the chain is mixing well as it is exploring the distribution by traversing to areas where its density is

very low.

The proportional hazards model for comparing the two groups is

h(t) =
{
h0(t) if group = 0
h0(t)eβ if group = 1

The probability that the hazard of group = 1 is less than that of group = 0 is written as

P (h0(t)eβ < h0(t)) = P (β < 0).

The probability for posterior distribution samples can be worked out by taking into consideration those
samples whose coefficient is less than 0. For our model, P (hazard(group = 1) < hazard(group = 0)),
computed by using PROC MEANS procedure is 0.982 (Table 4). Thus, there is 98.2% chance that the
hazard rate of group = 0 is less than that of group = 1. This is also consistent with the fact that the
average survival time of group = 0 is less that that of group = 1.

4 Piecewise Constant Baseline Hazard Model

We consider different priors for piecewise exponential model. For Cox model, the model parameters are
regression coefficients. For piecewise exponential model, parameters are the regression coefficients and
hazard functions. The priors for the hazard functions and the regression coefficients are assumed to be
independent.

The Bayesian analysis treats model parameters as random variables and the inference about these
parameters is based on posterior distribution of the parameters. Although it is difficult to obtain the
closed form of the posterior distribution, however MCMC method is used to simulate samples from the
posterior distribution. The procedure for conducting Bayesian analysis is described below:
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For single failure time variable, let
{

(ti, xi, δi), i = 1, 2, . . . , n
}
be the observed data, where ti is the

failure time associated with the covariate x and δi indicates whether the failure time is censored or not.
Let a0 = 0 < a1 < · · · < aJ−1 < aJ = ∞. For piecewise baseline hazard model, we consider hazard
function in original scale and estimate the parameters using maximum likelihood technique and also the
information matrix.

The hazard function for subject i is

h(t|xi;β) = h0(t) exp(β′xi), i = 1, 2, . . . , n
where h0(t) = λj , aj−1 ≤ t < aj(j = 1, . . . , J).

In fact, we assume that the baseline hazard is constant within each interval. The baseline hazard is
characterized using J parameters, that is, λ = (λ1, . . . , λJ)′.

The baseline cumulative hazard function is

H0(t) =
J∑
j=1

λj∆j(t)

where ∆j(t) =

0 t− aj−1
t− aj−1 aj−1 ≤ t < aj
aj − aj−1 t ≥ aj

.

4.1 Estimation of λ and β

The log likelihood function involving parameters λ and β is given by

l(λ, β) =
n∑
i=1

δi

[ J∑
j=1

I(aj−1 ≤ ti < aj)logλj + β′xi

]
−

n∑
i=1

[ J∑
j=1

∆j(ti)λj
]

exp(β′xi)

=
J∑
j=1

dj logλj +
n∑
i=1

δiβ
′xi −

J∑
j=1

λj

[ n∑
i=1

∆j(ti) exp(β′xi)
] (1)

where dj =
∑n
i=1 δiI(aj−1 ≤ ti < aj).

For fixed β, ∂l∂λ = 0 gives

λ̃j(β) = dj∑n
i=1 ∆j(ti) exp(β′xi)

(j = 1, . . . , J).

It is difficult to obtain the estimate of parameter β, but one may use the profile log likelihood for β by
substituting the values of λ̃ into the likelihood function l(λ, β). Thus, the profile likelihood of β will be

lp(β) =
n∑
i=1

δiβ
′xi −

J∑
j=1

dj log

[ n∑
l=1

∆j(tl) exp(β′xl)
]

+ c

where c =
∑
j(dj logdj − dj).

Since the constant c does not depend on β and hence, it can be discarded from lp(β).
The MLE β̂ of β is obtained by maximizing

lp(β) =
n∑
i=1

δiβ
′xi −

J∑
j=1

dj log

[ n∑
l=1

∆j(tl) exp(β′xl)
]

with respect to β and the MLE λ̂ of λ is given by λ̂ = λ̃(β̂).

Priors for Piecewise Exponential Model
By assuming λ = (λ1, . . . , λJ)′ to be the constant baseline hazards, the following priors have been used
for regression parameters.
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Improper Prior: The joint prior density is given by

p(λ1, . . . , λJ) =
J∏
j=1

1
λj

∀λj > 0.

This prior is improper (nonintegrable), but the posterior distribution is proper as long as there is at least
one event time in each of the constant hazard intervals.

Uniform Prior: The joint prior density is given by

p(λ1, . . . , λJ) ∝ 1 ∀λj > 0

This prior is improper (nonintegrable), but the posteriors are proper as long as there is at least one event
time in each of the constant hazard intervals.

Gamma Prior: The Gamma distribution G(a, b) has a pdf

fa,b(t) = b(bt)a−1e−bt

Γ (a) , t > 0

where a is the shape parameter and b−1 is the scale parameter. The mean and variance are a
b and a

b2

respectively.

Independent Gamma Prior: For j = 1, . . . , J , λj has an independent G(aj , bj) prior and the joint
prior density is given by

p(λ1, . . . , λJ) ∝
J∏
j=1

{
λ
aj−1
j e−bjλj

}
∀λj > 0.

Auto Regressive (AR) Prior: λ1, . . . , λJ are correlated as follows:

λ1 ∼ G(a1, b1)

λ2 ∼ G
(
a2,

b2

λ1

)
. . .

λJ ∼ G
(
aJ ,

bJ
λJ−1

)
.

The joint prior density is given by

p(λ1, . . . , λJ) ∝ λa1−1
1 e−b1λ1

J∏
j=2

( bj
λj−1

)aj
λ
aj−1
j e

−
bj

λj−1
λj
.

4.2 Bayesian Analysis of Piecewise Exponential Model for Post PK Glaucoma

To illustrate the Bayesian analysis of piecewise exponential model, we again consider the same data as
described in Section 4.1 with 28 censored observations. But in this case, the results are given for two
groups viz. group1 as ‘age’ (age ≤ 40 coded ‘0’ and age > 40 coded ‘1’) and group2 as ‘sex’ (male, coded
‘0’ and female, coded ‘1’) separately. The results have been compared by using DIC and pD criteria, by
considering 4 different priors viz. improper, uniform, Gamma and AR Gamma. The option PIECEWISE
= HAZARD in SAS is used for modelling of constant hazard in original scale according to the procedure
defined in Section 4.

The comparison in terms of DIC and effective number of parameters (pD) for both the groups (age
and sex) are presented in Table 5.
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Table 5. DIC and pD for different priors.

Group
Status

Improper Uniform Gamma AR Gamma
pD DIC pD DIC pD DIC pD DIC

Group1(Age) 8.82 1808.81 8.14 1811.59 8.66 1808.91 8.44 1808.15
Group2(Sex) 8.92 1815.99 8.26 1818.02 8.75 1815.90 8.55 1815.28

Table 6. The PHREG procedure for AR Gamma prior.

Bayesian Analysis
For Group1 (age) and Group2 (sex)

Model Information Constant Hazard Time Intervals
Data Set OUT.COX_DATA Interval Hazard
Dependent Variable Followup [Lower, Upper) N Event Parameter
Censoring Variable status 0 15 86 60 Lambda1
Censoring Value(s) 0 15 21 19 18 Lambda2
Model Piecewise Exponential 21 27 34 33 Lambda3
Burn-In Size 2000 27 33 7 7 Lambda4
MC Sample Size 10000 33 45 23 23 Lambda5
Thinning 1 45 54 24 24 Lambda6

54 66 24 24 Lambda7
66 Infty 16 16 Lambda8

Since DIC (Deviance Information criterion) is lower for AR Gamma prior and hence the results for
this prior are presented for both the groups, that is, age and sex in Table 6.

The table gives the information for piecewise exponential model along with constant hazard time
intervals (for both groups). By default, the time axis is partitioned into eight intervals of constant hazards.
The number of events and observations are also shown in the Table 6. Note that the constant hazard
parameters are named as Lambda1,. . . , Lambda8.

The maximum likelihhod estimates of Lambda1, . . . , Lambda8 for both the groups are presented in
Table 7.

The model parameters include eight hazard parameters Lambda1,. . . , Lambda8, and the AR Gamma
prior for regression coefficients for age as well as sex. The maximum likelihood estimates (Ref. Section
4.1) obtained in Table 7, are used as the starting values for simulation of the posterior distribution.

Summary statistics for all model parameters along with first and third quartile are shown in Table 8.
Table 9 shows posterior intervals along with highest posterior density (HPD) intervals.
The posterior autocorrelations namely, Lag1, Lag5, Lag10, Lag50 for both the groups are shown

in Table 10. We observe that as the lag increases, the values of autocorelations decrease and becomes
negligible for Lag50 in both the groups.

The Geweke diagnostics result are presented in Table 11.
The values in the table show non-significant results for group2, for all hazard parameters. This means

that there is good mixing of the Markov chain. However, the results are significant for group1 which
means that the chain has not reached the right distribution and the chain is not mixing well. One may
conclude that we may need higher burn-in size for convergence for group1.

The effective sample size (ESS) along with correlation time and efficiency are shown in Table 12.
The corelation time for sex is 15.1724 with efficiency 0.0659, however, for age the correlation time

is 25.8846 with efficiency 0.0386. The efficiency is high and correlation time is low for sex as compared
to age. One of the reasons for this is that the distribution of sex has reached convergence while the
distribution of age has not reached convergence.

Fig. 3 displays the diagnostic plots for age and sex.
It is evident from trace plot that the centre of the chain is around 0.0 for sex, with small fluctuations.

However, chain does not converge to a proper point for age. The autocorrelations are high for age as
compared to sex at least up to Lag10.
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Table 7. Maximum likelihood estimates for AR Gamma prior.

Maximum Likelihood Estimates (For Group1, Age)
Parameter DF Estimate Standard Error 95% Confidence Limits
Lambda1 1 0.0106 0.0032 0 0.02
Lambda2 1 0.0111 0.0039 0 0.02
Lambda3 1 0.0253 0.008 0.01 0.04
Lambda4 1 0.0066 0.003 0 0.01
Lambda5 1 0.0139 0.0046 0 0.02
Lambda6 1 0.029 0.0095 0.01 0.05
Lambda7 1 0.0376 0.0122 0.01 0.06
Lambda8 1 0.0267 0.0093 0.01 0.05

Age 1 0.4009 0.1538 0.1 0.7

Maximum Likelihood Estimates (For Group2, Sex))
Parameter DF Estimate Standard Error 95% Confidence Limits
Lambda1 1 0.0201 0.0047 0.01 0.03
Lambda2 1 0.0207 0.0064 0.01 0.03
Lambda3 1 0.0471 0.0124 0.02 0.07
Lambda4 1 0.0123 0.0052 0 0.02
Lambda5 1 0.0254 0.0073 0.01 0.04
Lambda6 1 0.0528 0.0151 0.02 0.08
Lambda7 1 0.0679 0.0194 0.03 0.11
Lambda8 1 0.047 0.0148 0.02 0.08

Sex 1 0.0376 0.1459 -0.25 0.32

Table 8. Posterior summary for AR Gamma prior.

Posterior Summary (For Group1, Age)

Parameter N Mean Standard Deviation Percentiles
25% 50% 75%

Lambda1 10000 0.0111 0.0032 0.0088 0.0107 0.0131
Lambda2 10000 0.0117 0.004 0.0088 0.0112 0.014
Lambda3 10000 0.0259 0.008 0.0201 0.0249 0.0308
Lambda4 10000 0.0074 0.0032 0.005 0.0068 0.0091
Lambda5 10000 0.0145 0.0047 0.0111 0.0139 0.0172
Lambda6 10000 0.0299 0.0096 0.0231 0.0286 0.0355
Lambda7 10000 0.0387 0.0124 0.0299 0.0372 0.0458
Lambda8 10000 0.0278 0.0096 0.0209 0.0265 0.0333

Age 10000 0.3938 0.1491 0.2889 0.3899 0.4922

Posterior Summary (For Group2, Sex)

Parameter N Mean Standard Deviation Percentiles
25% 50% 75%

Lambda1 10000 0.0205 0.0046 0.0173 0.0201 0.0232
Lambda2 10000 0.0215 0.0064 0.0169 0.0207 0.0252
Lambda3 10000 0.0472 0.0122 0.0384 0.0458 0.0544
Lambda4 10000 0.0133 0.0054 0.0094 0.0125 0.0163
Lambda5 10000 0.0258 0.0072 0.0208 0.025 0.03
Lambda6 10000 0.0533 0.0147 0.0426 0.0515 0.0622
Lambda7 10000 0.0687 0.0192 0.0547 0.0664 0.08
Lambda8 10000 0.0479 0.015 0.0371 0.0462 0.0565

Sex 10000 0.0345 0.138 -0.055 0.0358 0.1255
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Table 9. Posterior intervals for AR Gamma prior.

Posterior Intervals (For Group1, Age)
Parameter Alpha Equal-Tail Interval HPD Interval
Lambda1 0.05 0.0058 0.0182 0.0054 0.0177
Lambda2 0.05 0.0055 0.0213 0.005 0.02
Lambda3 0.05 0.0131 0.0442 0.0116 0.0416
Lambda4 0.05 0.0027 0.0151 0.0023 0.0139
Lambda5 0.05 0.0071 0.0253 0.0063 0.0238
Lambda6 0.05 0.0149 0.0523 0.0127 0.0487
Lambda7 0.05 0.0193 0.0678 0.0176 0.0642
Lambda8 0.05 0.013 0.0502 0.0109 0.0468

Age 0.05 0.1143 0.6998 0.1091 0.6889

Posterior Intervals (For Group2, Sex)
Parameter Alpha Equal-Tail Interval HPD Interval
Lambda1 0.05 0.0129 0.0312 0.0123 0.0299
Lambda2 0.05 0.0114 0.0363 0.0102 0.0343
Lambda3 0.05 0.0272 0.075 0.0254 0.0712
Lambda4 0.05 0.0054 0.0258 0.0044 0.0239
Lambda5 0.05 0.0144 0.0427 0.0128 0.0401
Lambda6 0.05 0.0294 0.0867 0.0275 0.0832
Lambda7 0.05 0.038 0.1123 0.0343 0.106
Lambda8 0.05 0.0241 0.0822 0.0222 0.0784

Sex 0.05 -0.2416 0.3055 -0.2494 0.2958

Table 10. Posterior autocorrelations for AR Gamma prior.

Posterior Autocorrelations (For Group1, Age)
Parameter Lag 1 Lag 5 Lag 10 Lag 50
Lambda1 0.7935 0.5925 0.4184 -0.0244
Lambda2 0.543 0.4066 0.2872 -0.0215
Lambda3 0.6578 0.4936 0.3439 -0.0314
Lambda4 0.3395 0.231 0.1695 -0.0088
Lambda5 0.5757 0.4343 0.3002 -0.0212
Lambda6 0.5942 0.4346 0.3087 -0.0263
Lambda7 0.5653 0.4234 0.2945 -0.0213
Lambda8 0.4497 0.3356 0.2257 -0.0122

Age 0.9301 0.7047 0.506 -0.0386

Posterior Autocorrelations (For Group2, Sex)
Parameter Lag 1 Lag 5 Lag 10 Lag 50
Lambda1 0.67 0.3954 0.2122 0.0277
Lambda2 0.4113 0.2393 0.1238 0.0134
Lambda3 0.5208 0.307 0.1575 0.0175
Lambda4 0.22 0.1317 0.0768 0.0135
Lambda5 0.443 0.2685 0.1391 0.0307
Lambda6 0.4695 0.271 0.1403 0.0213
Lambda7 0.466 0.2757 0.1422 0.0159
Lambda8 0.3401 0.2052 0.1156 0.0048

Sex 0.8784 0.523 0.277 0.0242
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Table 11. Geweke diagnostics for AR Gamma prior.

Geweke Diagnostics
(For Group1, Age) (For Group2, Sex)

Parameter z Pr > |z| Parameter z Pr > |z|
Lambda1 -2.1878 0.0287 Lambda1 0.1356 0.8921
Lambda2 -2.4979 0.0125 Lambda2 -0.3773 0.706
Lambda3 -2.1979 0.028 Lambda3 0.2583 0.7962
Lambda4 -2.1204 0.034 Lambda4 -0.2774 0.7815
Lambda5 -1.9887 0.0467 Lambda5 -0.1486 0.8818
Lambda6 -2.0735 0.0381 Lambda6 0.054 0.957
Lambda7 -2.6589 0.0078 Lambda7 -0.1637 0.8699
Lambda8 -2.1701 0.03 Lambda8 -0.0607 0.9516

Age 2.2752 0.0229 Sex -0.1352 0.8924

Table 12. Effective sample sizes for AR Gamma prior.

Effective Sample Sizes
(For Group1, Age) (For Group2, Sex)

Parameter ESS Correlation
Time

Efficiency Parameter ESS Correlation
Time

Efficiency

Lambda1 461.4 21.6716 0.0461 Lambda1 854.2 11.7075 0.0854
Lambda2 677.5 14.7608 0.0677 Lambda2 1352.4 7.3944 0.1352
Lambda3 530.7 18.8436 0.0531 Lambda3 1042.8 9.5897 0.1043
Lambda4 1032.1 9.6891 0.1032 Lambda4 2314.4 4.3208 0.2314
Lambda5 641.2 15.5956 0.0641 Lambda5 1228.1 8.1424 0.1228
Lambda6 631.5 15.8349 0.0632 Lambda6 1158.6 8.6308 0.1159
Lambda7 665.2 15.034 0.0665 Lambda7 1185.6 8.4344 0.1186
Lambda8 806.7 12.3956 0.0807 Lambda8 1463 6.8355 0.1463
Age 386.3 25.8846 0.0386 Sex 659.1 15.1724 0.0659

Figure 3. Diagnostic plots for age and sex.

It may be concluded that based on DIC and pD criteria, the AR Gamma prior performs better than
all other priors viz. improper, uniform and gamma in PHREG Bayesian analysis for piecewise exponential
model. Also trace plots, posterior autocorrelations, lags, correlation time and efficiency shows that group2
(sex) has reached the right distribution.
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