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Abstract The community detection is one of the main problems in social network analysis. Many
methods are proposed to recover the community labels of nodes by assuming the number of
communities is known. There has been an increasing interest to explore the communities number.
We propose a fast method based on spectral proprieties of the graph to estimate the number K of
groups. The method performs well, especially when the number of groups in network is large, and
we focus on when the network is unbalanced.
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1 Introduction

An article was written by the mathematician Leonhard Euler, presented at the academy of Petersburg in
1735 and published in 1741, treated the problem of Seven Bridges of Königsberg [14], the problem was to
find a walk from a given point that would return to this point by passing once and only one by each of
the seven bridges of the city Königsberg. After that, several works are developed in the topic of random
graphs in many fields. In mathematics, a random graph is a graph that is generated by a random process.
The first model of random graphs was popularized by Paul Erdös and Alfréd Rényi in a series of articles
published between 1959 and 1968 [4].

One of the important point in the study of the random graphs is the community detection. The
community detection aims to divide the network to many subgroups that have nodes strongly connected.
Until the existence of community detection, it was created several number of methods and algorithms to
find the number of communities K in the network. It helps to find more useful information, that can’t
find in studying the network as a whole. For example if we have a number K of communities, from some
parameters such as the average vertex degree, we can extract some information and conclusion about the
members of these communities, which could not be done by looking at the statistics for the whole graph.
In addition how the nodes in the same group are highly connected but with few links with other node so
brings more information about the network. It used for different domain like biology, computer science,
.... For example, in the metabolic network, the communities present the biological functions of the cell
[15], in the web graph the topics of interest are communities [12,5]. In the paper of Girvan and Newman
in 2002 [8], that the problem was proposed for the first time. The authors began from the principe that
in the real small-world networks, it exists a community structure, so they ask how to do an automatic
detection for this structure. Since 2002, and the introduction of the algorithm [8], several algorithms were
proposed, the case of the paper Fortunato [6] that was published in 2009, with more than 50 methods.
The paper of Xie et al [18] in 2011 did the comparison of 10 methods published after 2009.

There are many ways to model a community structure, the stochastic block model is one of them, is a
generative model, generally a choice for a network position. This model is used in the study of random
graphs, and have a long tradition of social sciences and computer science [11,7,1,17,9]. Stochastic block
model tends to produce graphs containing subgraphs, that are connected with particular edge densities.
Here, we use spectral methods to estimate the number of communities under the stochastic block model.
Especially we can show how to use the bethe hessian matrix to find the number of communities
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2 The Bethe Hessian Matrix and the Relation with the Non-Backtracking
Matrix

First, let us introduce some notations that will be used below. For a connected network graph G = (V,E),
with number of nodes equal to |V | = n, the adjacency matrix A is defined as Aij = 1 if (i, j) is an
element in the set of edges E, and Aij = 0 otherwise. In our work, we focused on that we call "undirected
networks", on which edges don’t have orientations (i.e., the edge (i,j) is identical to the edge (j,i)) so the
adjacency matrix is symmetric, on the other side the "directed networks" have orientations. We denote
also the degree matrix by D = diag(d1, · · · , dn), with di is the vertex degree (i.e., the number of links
connecting this vertex), and the Laplacian matrix L = D −A.

The Bethe Hessian, sometimes called deformed Laplacian is defined as

H(r) = (r2 − 1)I − rA+D

where r ∈ R is a parameter, and I is the n× n identity matrix.
Before speaking about the relation between the Bethe hessian matrix and the non-backtracking matrix,

let us first define the non backtracking matrix :
The non-backtracking matrix was defined first by Kiichiro Hashimoto [10], and is a matrix that can

represents the structure of links of a network. It can be used to identify non-backtracking walks on a
network. The non-backtracking matrix is defined for directed links, but often used to undirected, in our
case (undirected network), we replace each of undirected link between i and j, with a pair of directed
i → j and j → i. The matrix encodes information about sequence of links that can follow in a walk
through the network, specifically if you just traversed the link i→ j, the matrix helps to tells what links
k → l are permissible as the next step in your walk with no possibility of immediately backtracking from
i→ j.
Mathematically, it’s given by :

Bi→j,k→l =
{

1 if j = k and i 6= l
0 otherwise

The 2n× 2n matrix B̃ is the spectrum of B, known in [2] and [13] is defined by

B̃ =
(

0n D − In
−In A

)
where, 0n is the n × n matrix of all zeros, In is the n × n identity matrix, and D = diag(di) is n × n
matrix with degrees di on the diagonal.

In [5], it observed that in a network of K groups (or clusters), the first K largest eigenvalues in
magnitude of B̃ are real-valued and well separated from the bulk, which is contained in a circle of radius
||B̃||1/2. It was also observed that the spectral norm of the non-backtracking matrix is approximated by :

d̃ =
n∑
i=1

di

)−1 n∑
i=1

d2
i

)
− 1. (1)

3 A Modified Bethe Hessian Matrix to Estimate the Number of
Communities K

It was observed that in [3], the number of communities is presented by the number of negative eigenvalues
of H(r). The choice of parameter r is different from one to another. It takes rλ =

√
λ, where λ is the

average degree of the graph, that is defined mathematically as the double number of edges by the number
of vertex. This choice was the best choice in the paper of [16], and for general works, they argued that
the best choice is |r| = ||B̃||1/2, and the informative eigenvalues of H(r), ||B̃|| can be approximated by 1.
In [3], different choices are given for the parameter r, in our work we give another estimate value to this
parameter.
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It was argued in [16] that the informative eigenvalues of H(r) are negative when r = ||B̃||1/2. We
see that a choice was given to r with values of ra =

√
(d1 + · · ·+ dn)/n which proposed in [3] and this

method was noted by BHa.
When the network is unbalanced, using the method of BHa tends to underestimate the number of

communities especially when the number of clusters becomes large, because when the network is balanced
that means every community has the same number of community which is not always true in reality. The
challenge is trying to find a solution that can solve this problem when the network is unbalanced, not
necessary that every community had the same size as the other . In our method of estimation, we used a
parameter α, with α ∈ [0, 1], and the modified Bethe Hessian matrix becomes :

Ĥ(r) = α(r2 − 1)I − rA+D.

Since the parameter r is very important in this estimation, we give to r a new value, that related with the
parameter ra used in [3]. So the new value of the parameter is rnew, with rnew = ((d1 + · · ·+ dn)/n)1/4,
and we denote this method by BhaNew.

Now, the Bethe Hessian matrix is not ready yet to use it to calculate the number of communities. We
know that both of adjacency matrix and laplacian matrix give information about the graph, so we use
the laplacian in the place of the adjacency matrix, and we correspond the number of communities by the
number of positive eigenvalues of Ĥ(r).

Ĥ(r) = α(r2
new − 1)I − rnewL+D

where Ĥ is the new modified bethe hessian matrix, L is the laplacian matrix that we defined before, and
the parameter α depend of the number of communities, in the case of large number (K > 5), we take the
values of [0.5, 1], else we take from the interval [0, 0.4].

4 Synthetic Networks

We generate a network under the stochastic block model with number of communities equal to K, we note
a label vector c ∈ {1, · · · ,K}n, so that ci = K if nπK−1 + 1 ≤ i ≤ nπK , where π0 = 0. We are interested
in the networks that have communities of different sizes, so we take the proportions of nodes falling into
each community π by setting π1 = r/K, πK = (2− r)/K, and πi = 1/K for 2 ≤ i ≤ K − 1, where r is the
community-size ratio that varies in the range [0.2, 1]. As r increases, the community sizes become more
similar, and are all equal when r = 1. The n ×K label matrix Z is to encode c by representing each
node with a row of K elements, exactly, one of which is equal to 1 and the rest are equal to 0, the matrix
Z is presented as ZiK = 1ci=K . We take also a K ×K matrix P with diagonal w = (w1, · · · , wk) that
tends to control the relative edge densities within communities and off-diagonal entries β, that controls
out-in probability and the matrix M = ZPZT .

Under the stochastic block model, the adjacency matrix A is generated according to an edge probability
matrix A = EA proportional to M [3]. In our estimation, the number of nodes is given by n = 2000, the
out-in probability ration β = 0.2, the average degree is take the value of λ = 18 for all figures, and the
parameter w is fixed by 1, wi = 1, for all 1 ≤ i ≤ K. We consider different values for the number of
communities K = 4, 5, 8, 10, and 12. For each setting, we generate 200 replications of the network and
record the accuracy, the accuracy is defined as the fraction of times that the method is correctly estimate
the number of communities K by the length of total replication. First, we varied the community-size
ratio to see the result for different clustering, so see the performance of our method when the network is
unbalanced. We can see that the method performs well, with different number of groups. The figures
1 and 2 present the results of the method, especially when the number of groups K becomes large, for
example when K=10, the method BHa cannot calculate the number, which can be done with the new
method. In figure 3, we remark that the method gives some information when the others method did not.

5 Real World Network

In this section, we talk about the result of the performance of the new method for real network. We
applied our algorithm to the college football network [8], where nodes are the 115 teams of US college
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Figure 1. The accuracy of estimating K as a function of the community-size ratio r for K=4 and K=5, with
α = 0.25 and α = 0.29 respectively.

football, and edges represents the game played in 2000. And with α = 0.4, we found the number of
communities that is equal to 12.

6 Discussion

Finally, we can remark that in this paper we have talked about how to find the method, or to find the
best way to estimate the number of communities in a network. Also the spectral method as is known
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Figure 2. The accuracy of estimating K as a function of the community-size ratio r for K=8 and K=10, with
α = 0.62 and α = 0.65 respectively.

performs well and fast. Our method is especially used for the unbalanced networks that is the case of
many network in real. Our suggestion can help to find the clusters. The method of approximation of the
value α will be treated on future work.
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