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Abstract The purpose of this article is to obtain some limit properties for (an, ¢(n))-Asymptotic
Circular Markov Chains. This paper firstly presents some limit theorems of delayed sums for
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1 Introduction

Let (§2, F,P) be the underlying probability space and (&,)%2, be a nonhomogeneous Markov chain taking

values in X = {1,2,--- ,b} with the transition matrices,
Py = (pu(i, ), 1,5 € X,n > 1, (1)
where p,, (i, j) = P(&, = j|én—1 = 1). For simplicity, &, » represents the random vector of ({m, Emag1, - s
Emin) a0d Ty = (T, Tint1s* » Tmtn), & realization of &, ,, Let the joint distribution of &, ,, be
P(@mn) = PEmn =Tmn), Tk €X, m<k<m+n (2)

Let f(© be a probability distribution on X and let

P = Py Py -+ P, )

f® .= fOpp,...p. (4)

For convenience, let p™™ (i, j) denote the (4,4) element of P(™™ and f*)(j) be the j th element of
f®) Tt is easy to see that

P (i, §) = P& = jlém = 1), (5)
F®G) = P& = ). (6)
If the Markov chain is homogeneous, then {P,,n > 1} will be denoted simply by P and P("™+k) is
Pk,
Let A = (a;5) be a matrix on X x X'. We define the norm || - || of A as follows:

1A]| = sup >~ |ay]- (7)

zereX

If f = (f1, f2, ) is a row vector, we define || f]| = Zj’;l I£5], if g = (91,92, -+)T is a column vector,
we define | g|| = sup;cx |gi|- The norms defined as above satisfy the following properties:

(a) ||AB]| < ||A|l - ||B]| for all matrices A and B;

(b) |IP|| =1 for any stochastic matrix P.

These two properties will be used repeatedly in this article.
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Definition 1. Let @ be a “constant” stochastic matrix (i.e. () is a stochastic matrix each row of which
is the same). The sequence {P,,n > 1} is said to be strongly ergodic (with constant stochastic matrix Q)
if for every m > 0
lim [|PC™™ — Q| = 0. (8)
n—oQ

Throughout this paper we always assume that (a,)52, and (¢,,)22, are two sequences of nonnegative
integers such that ¢(n) tends to infinity as n — oo.

The sequence {P,,n > 1} is called to be (a,, ¢(n))-strong ergodicity of Markov chains in the Ceséro
sense (to constant stochastic matrix @) if for every m >0

1 an+¢(n)
. (m,t) _ _
Ao 2 T =0 ®)
t=an,+1

If the Markov chain is homogeneous, (9) become

an+é(n
. t _
nhﬂngo E P =0. (10)
t=a,+1

An irreducible stochastic matrix P, of period d(d > 1) partitions the state space X into d disjoint
subspaces Cy, Cy, -+ ,Cy_1, and Py yields d stochastic matrices {7;,0 <1 < d—1}, where T} is defined on
C; . If the irreducible periodic stochastic matrix P is finite, then each T} is automatically strongly ergodic,
but if the irreducible periodic stochastic matrix P is infinite, the strong ergodicity of 7} is not guaranteed.
If each T is strongly ergodic, then the stochastic matrix will be called periodic strongly ergodic [5].

Definition 2. Let (£,)2%, be a non-homogeneous Markov Chain with the initial distribution f(*) and
the transition matrices of (1.1), T} = (t:(¢,7)),(I = 1,2,---d) be d transition matrices. The following
Markov chains is called an (a,, ¢(n))-asymptotic circular Markov chain of moving average if

an+¢(n)
lim —— 1Prasi — Tl =0, 1=1,2,---.d. (11)
n— 00 ¢(n> t=§+1

In particular, if a,, = 0,¢(n) = n and
Ptd+l2Tl7 l:172a"'7d7 t2071a27"' (12)

this Markov chain is called a circular Markov chain.

Circular Markov chains play an important role in the nearest neighbour random walks on inhomoge-
neous Markov chains periodic lattices, i.e[6]. periodic lattices which consist of a periodically repeated unit
cell, where unit cell contains a number of non-equivalent sites [7], an example of circular Markov process
occurs in the evaluation system of M/M/C queueing system in which the servers, after an idle period,
only restart work when enough customers arrived to the system.

Definition 3. Let (£,)52, be a nonhomogeneous Markov chain taking on values in X'. Let

1
fan,o(n) (W) = ~ o log p(&a,.,é(n)); (13)

where log is the natural logarithm. f, 4n)(w) is called generalized entropy density of &, ) and
fan.6(n)(w) can be rewritten as

an+¢(n)

Farotm (@) = = log F@)(&,.) + > log prl&r—1,&) (14)

¢(n) i
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Let @ be another prohability measure on (§2,H,) if (1,,)22, is a nonhomogeneous Markov chain under
Q with initial distribution

(¢(1),4(2),...,q(b)), (15)
and transition matrices
Qn:(Qn(iaj))bXba i,jEX,TLZ 1, (16)

where ¢, (4, 7) = Q(n = j|§n—1 = 7). Define

an+¢(n)
q(Ta, ¢(n)) = P(Ta,) H Qe (Th—1,T)- (17)

k=an,+1

R @ (Mk—1, k)
Lo oim (@) = ——— log Ze\Mk=1, k) 18
4 () o(n) k:§+1 Pr(§k—1,k) 18)
an"l“b(”) Qk(nk 1 nk)

L(w) = limsup Ly, 4(n)(w) = —liminf — log ———>"~ 19
) n o) () n ¢(n) k:;H Pr(Ek—1,8k) 19)

L, 6n)y(w) and L(w) are called generalized sample relative entropy and generalized sample relative
entropy rate between P and @) respectively.

Our paper is aim at extending the known results, the approach used in this paper different from
[8] and[9], the essence of the method is first to construct a one parameter class of random variables
with means of 1, then, using Borel-Cantelli lemma, to prove the existence of a.e. convergence of certain
random variables[10]. Under the condition of Lemma 1 of [10], we first give the definition of an (a,, ¢(n))-
asymptotic circular Markov chain and prove some lemmas. Then, we prove generalized limit theorems
for countable (a,, ¢(n))-asymptotic circular Markov chains, as corollaries, we obtain the strong law of
large number for non-homogeneous Markov chains which is known results of [10] as well as extending
the results of [8], Finally, we achieve the generalized Shannon-McMillan Breiman theorem for finite
(an, ¢(n))-asymptotic circular Markov chains, which is, to some extent, an extension of the result of[9)].

The remaining paper is organized as follows. Section 2 provides some related Lemmas. Section 3 gives
the main results and the proofs.

2 Some Lemmas

Before proving the main results, we firstly prove some related lemmas, which will play important roles in
achieving our results.

Lemma 1. [11] Let Q;(I = 1,2,---,d) be d stochastic matrices and let Ry = Q1Q2---Qq4,Ra =
Q2Q3 - QaQ1,

o Ry = QaQ1 - Qa—1. If Ry is (ay, ¢(n))-strongly ergodic with constant stochastic matrix Ty. Then
Ro, R3, -+, Ry are also (ay, ¢(n))-strongly ergodic with the constant stochastic matrices To, T5,- -+ , Ty,
resp., where T, =T} Hi;i Q:(l=2,---,d).

Proof. Since T is a constant stochastic matrix, which implies that T;(I = 2,--- ,d) are also constant
stochastic matrices. For any stochastic matrix P and a constant stochastic matrix @) we have PQ = Q.
Since Ry is (an, ¢(n))-strongly ergodic with a constant stochastic matrix 77, then

an+¢(n)
lim ||— RF —Ty|| =0. (20)
S ey 2 B
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when [ > 2, note that

an+¢(n) an+¢(n)

1 1 .
o(n —1k§+2Rl =5 - 1k§+2(Rl )
1 an+¢(n) d -1
:W Z <HQ ) Ry (HQz) - (H Qi) T (H Qz)] (21)
k=an+2 L \i=1 i=1 i=1

d 1 an+o(n) -1
(1‘[@) -1 2 m-h <HQZ->
=1 i=1

k=a,+2
we have
1 an+o(n) 1 an+o(n)
[ X Bi-Tlslgny— > R (22)
k=a,+2 k ayn+2
(20) and (22) imply that
an+¢(n)
Jdim Il Z Rf —Ti| = 0. (23)
This means R)(I = 2,--- ,d) are (an, p(n))-strongly ergodic. O

Lemma 2. Let Q;(l=1,2,--- ,d) be d stochastic matrices. Let {Q,,n > 1} be a sequence of stochastic
matrices satisfying

Qtd+l:Ql7 1:1723"'7d7 t:03132 (24)
Let P"™) be defined as in (3). If (11) holds, then, for any positive integer k,

an+¢(n)
(b(]‘n) Z Hp(td+l,td+l+k)) _ Q(thrl,thrlJrk) H — O, l — 17 27 L. 7d. (25)
k=a,+1

Proof. For k = 2, we have by (24)
HP(td+l,td+l+2) _ Q(td+l,td+l+2) ”

=||Prati1+1Pravite — Qi+1Qi+2||

(26)
=||Prati+1Prari+2 — Quy1Prati+2 + Qua1 Pratir2 — Quv1Quy2||
SPeayivr = Quiall + [ Pratire — Quazll
By (11), we have
1 an+¢(n)
||P(td+l,td+l+2) _ Q(td+l,td+l+2)|| =0, [ = 1,2, ,d. (27)
5 2,
Similarly, for k£ > 2, (25) holds by induction. O
Lemma 3. [10/Assume that (£,)22 is a nonhomogeneous Markov chain taking values in X = {1,2,--- ,b}

with initial distribution (15) and the transition matrices as (16). Let (gn(x,y))22, be a sequence of real
functions defined on X x X. If for every e >0

Zexp[—5¢(n)] < o0, (28)
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and there exists a real number 0 < v < oo such that

an+¢(n)
lim Supm Z Bl gk (&k—1, &) exp (Y1gr (&h—1, &) |€k—1] = c(v;w) < 0 ace., (29)
" k=an,+1
then, we have
1 an+¢(n)
lim — Z {or(k-1,%k) — Elgr(&k—1,&)|k—1]} =0 a.e. (30)
noon) A~
Proof. See Lemma 1 of [10]. O

Lemma 4. Let {t;}72, be a bounded sequence of points in the plane, |t < M, 6 be a positive number,
and let N, (0) be the number of terms which not belong to U(0,9) in the first n terms of the sequence.
Then

1 an+é(n)
lim — t, =0 31
n o 2 ey
holds if and only if
1
lim —— N, (§) =0, V& > 0. 32
s N) (32)

Lemma 5. Let p(x) be a bounded function defined on at area D, a be a interior point in D, and p(x) be
continues at x =t, and let {ty,k > 1} be a collection of points in D. If

an+p(n)

1
lim — It —t|| =0
o, 2,
holds, then
1 an+o(n)
lim —— lo(te) — ()]l = 0. (33)
ORI

Proof. By the continuity of the function, Ve > 0,35 > 0 satisfying U(t,6) C D, whenever t; € U(t,4),
we have |¢(t1) — ¢(t)| < e. Let N, () be the number of terms which not belong to U(0,d) in the first n
terms of sequence {|tx —t|,k > 1}, and M, (¢) be the number of terms which are greater than € in the
first n terms of sequence {|¢(tx) — ¢(t)|}32 ;. Then,

Mp(e) < Nu(9) (34)

It follows from (1.11), Lemma 1, and (2.15) that

h}ln ¢( ] M,(e) =0, Ve>D0. (35)

Since the sequence {|p(tx) — ¢(t)|}52; is bounded, (2.14) follows from (2.16). O

Lemma 6. Let (£,)22, be a nonhomogeneous Markov chain with initial distribution (2) and transition
matrices (16) under measure P, (n,)52 also be a nonhomogeneous Markov chain with initial distribution
(15) and transition matrices(16)

Qn = (qn(3,7)); au(i,j)>71, 0<7<1, i,j€X,n>0, (36)
then

limlan%n){log (S, &) zb: (& logpk(fk_l’j)}zo P—a.e (37)
4 (€1, ) k) Gva) ) -

j=1
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Proof. Letting gi(s,t) = log gx(s,t) in Lemma 3, we have

Ep||gr(&e=1.0)|” exp (V]gk (Eo=1, &) |€e—1] = Y (log qr(€e=1,4))* (ak(Ek=1.4)) " Pr(Ek=1.J)

M-

<
Il
—

< (log 7')27“Y < b(log T)QT7

-

<
Il
-

By Lemma 3, we can easily prove

11m1a77+z¢(n){10gpk(§k175k) _ip (é- ])logpk(é-kl?])} —0. P—a.e (39)
noon) A= W (Er-1,88) = e @k (Ek-1,7) 7 -

O

3 The Main Results

In this section, we will present our main results based on previous Lemmas.

Theorem 1. Let (£,)5% be an (an, p(n))-asymptotic circular Markov chain defined by Definition 1. Let
(gn(z,9))22, be a sequence of real functions defined on X x X. If, for every e > 0,

> exp[—ed(n)] < oo, (40)

n=1

and there exists a real number 0 < v < oo such that

an+o(n)
lim sup o) > Ellgr(€-1,&) 17 exp (V]gr (-1, &) k1] = c(y;w) < 00 ae. (41)
" k=an+1
Let
i) =3 gnli, §)pnli, ) (42)
JjEX
hy, be a column vector with ith element hy, (i) and h'(l =1,2,--- ,d) be d column vectors with ith elements

hl(i). Let R, Ti(l =1,2,--- ,d) be the same as in Lemma 2 and Ry be (an, ¢(n))-strongly ergodic. If

an+¢(n)
lim > lhap = b =0, 1=1,2--d, (43)
n— oo (j)( ) Pt
and ||hy,|| and ht are finite, then
] oniolm) d
nlggo M Z 9k (Ek—1,8k) = Z Z h! (Z)WZ(Z) a.e., (44)
k=a,+1 exX =1
where wt = (7'(1),7(2), - - ) is the the common row vector of Ty and also the unique stationary distribution

determined by R;(1 =1,2,--- ,d).
Proof. By (40), (41) and Lemma 3, we have

an+¢(n)

Z {98 (&k—1,&) — Elgr(&r—1,&)|&—1]} =0 a.e. (45)

k=an,+1

mo
n o)
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Now, we consider

+ o) Z Z hitay, (1)pFFH) (&, 1)

P2 g

37

where [] represents the greatest integer not more than . The second term of (46) is defined to be zero if

¢(n)/d is a positive integer. Obviously,

$(n)

Z > grra,p®FO) (i) =0

i [d)(ﬂ Jd+1

(47)

Let {Qn,n > 1} be the same as in Lemma 2. And ¢"™ (i, j) be the (i, j) element of Q™™ M be the

upper bound of ||¢!||(l = 1,2,--- ,d). Let v be a positive integer, a,, = vd and h%*! = hl. Since

d %71
‘ Z Z heatigoasr (DU (€44 0)
PRGN
¢1 ZZ Z l+1 (i)q (td+l7td+l+a”)(£td+l’i)
=1 t=0
) d (%321
= |60 )ZZ Bratiroara (DD (G, )
I=1 t=0
) a [#72]-1
_ ) ZZ Z hl+1(i)p(td+l,td+l+vd) (Erar, 1)
=1 t=0
) d %P1
+ ¢)(n) ZZ hl+1(i)p(td+l,td+l+vd) (6td+l,i)
i I=1 t=0
1 a [Z-
. Z Z Z l+1 (td+l,td+l+an) (Erats )
¢( =1 t=0
) d (231
= é(n) >0 | tagipvata (i) = W) | pUATHETed ¢ i)
i I=1 t=0

n
Rt

-1

‘ -

+

v
M a
]

’hl+1(i)| ) ’p(td+l,td+l+vd) (Evarr i) — q(td+l,td+l+vd) )

Il
-
o
i
=
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d (21— M d_ %711
Z Z Hhtd+l+vd+1 hl+1||+ Z Z ||P (td+1,td+14vd) _ Q(thrl,thrlJrvd)” (48)
=1 t=0

It follows from (43) that the first term of (48) goes to zero when n — co. By Lemma 2, the second term
of (48) also tends to zero when n — co. Combining (45)-(48), we have

anto(n) 4 [22)-1
lim_ ¢(1n)k;+lgk(§k L6 — ZZ:; g B+ () gttt (g, o\ 0 g e (a9)
and for any positive integer N
: BRaAy 1 Lo L 141 (5 (tdtd++an) :
B, 2, SO G 2y 22y 2 M Gl (a0)

=0 a.e.

Set Rg11 = Ry, a, = vd. It is easy to see that for [ =1,2,--- d,

A, td+i4od
QUATLHI D) — Q111 Quarive  Quatidva = Que1Quy2 - Quiva = Riyy (51)

Let r( v)

1+1(i,7) be the v-step probabilities determined by R;y1. Set 7l = 7y and Ty = Ty, we have

Z ZZ Z hl+1 (td+l,td+l+vd) (Evasrsi) Z hl

[¢(”
‘ v=1[=1 t=0

- WZ N Z Z NG )rl+1 Eta+i,1) Z h”1 ()

d 1 [F52]-1 | X o 1
< ML) |— = 1 (&aqr, 1) — =7
—;;| ()| (b(n) e N; l+1( td+1 ) d ()
[ g TE X, Ee
<= hlJrl(Z) — — r (& ) l+1( )
Z;' 5 part N; A O =
L g B
+=3 > W) o) w (i) — (i)
i l=1 t=0
Ll g B
< *ZZlhl“(i)l TN |*Z7’l+1 5td+l, l+1( )\
d i 1=1 d)(n t=0
d
l+1 z+1 _

N |htH R? T, BN pit1 d (d 1
3;‘ ||||*Z 41— z+1II+E;|| HlW[W]_l

1A 1 d . d
SM&EHN;&H—EHH‘*‘M\M[M] —1].

Giving € > 0, by Lemma 1, we can choose a fixed N large enough so that the first term of (52) does not

exceed e. The second term of (52) tends to zero as n goes to infinity. By (50), (52) and the arbitrariness
of €, (44) follows. These complete the proof of Theorem 1. O
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Corollary 1. Let (£,)22 be an (an, d(n))-asymptotic circular Markov chain defined by Definition 2. Let
Ri(l=1,2,---,d) be the same as in Lemma 1. Assume that Ry is (an,¢(n))-strongly ergodic. Let g(x) be
a bounded function defined on X. Then

] ko)
nlgrgo o) k:%;rl ;Y Zg a.e., (53)
Proof. Let g,(x,y) = g(z) in Theorem 1, then
hiati(i) thdH i J)peati(i, J) thdH Ipta+i(is 3) = g(i) (54)
j j

Let hl(i) = > 9@ a(i, j) = g(i), where (4, j) is the (4, j) element of transition matrix @, , therefore
(43) holds. Since g(z) is bounded, thus ||A,|| and ||h!| are finite and (41) also follows. Note that

1 an+é(n) 1 an+é(n)
— Z 9(k—1,&k) = —— Z 9(&k—1) (55)

¢(TL) k=an+1 ¢(n) k=a,+1

and
1< 1< l
>SS H @@ = Y 5 g ) (56)
i =1 i =1

This corollary follows from Theorem 1 directly. O

Define the indicator function 1;(;j) on X as follows:
1=
where i =1,2,---

Corollary 2. Let (fn) o be an (an,d(n))-asymptotic circular Markov chain defined by Definition
2. Let Ri(I = 1,2,- ,d) be the same as in Lemma 1. Assume that Ry is (an,p(n))-strongly er-
godic. Let San,¢>(n) ¢, IL) be the number of ¢ in the sequence of &a,4+1(W),&an+2(w), s Eantom) (W),

i.e. Sa, p(my(C:w) = S0t 1), Then

m=an,-+1

Sa,,, ¢(n 1 d
T E g a.e., (58)

Proof. Let g(x) = 1.(x) in Corollary 1. Obviously, |g(x)| < 1. Noticing that

an—i-(zﬁ(n) an+¢(n)

B 1 _ Supstml(w)
50 ,EH 96 = 5 k;ﬂ o) =00 o
1< 1< 1y
(3.19) follows from Corollary 1. O

Corollary 3. Let (£,)52, be a non-homogeneous Markov chain . Let {gn(x,y),n > 1} and h, be the
same as in Theorem 1. Let P be a stochastic matriz and be periodic strongly ergodic. Let h(i) be another
function defined on X, h be column vector with ith element h(i). If conditions (40) and (41) hold resp.,

and
an+o¢(n)

lim % > IP—Pl=0 (61)

n—oo (N Pttt

Copyright © 2018 Isaac Scientific Publishing JAS
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1 an+é(n)
lim —— Iy — bl =0 (62)
n—oo ¢(n) k:%;rl
if || and ||g|| are finite, then
an+é(n)
1

lim — In(Ek—1,&k) = h(i)w(i) a.e. (63)
n—00 (;S(n) k:%,:—&-l zl:

where ©* = (7! (1), 74(2),---) is the unique distribution determined by P.

Proof. Since periodic strong ergodicity implies (a,, ¢(n))-strong ergodicity. Let d = 1 in Theorem 1, it
follows. O

Now we consider, based on theorem 1,the generalized Shannon-McMillan theorem, we give the following
theorem:

Theorem 2. Let ()%, be an (an, p(n))-asymptotic circular Markov chain on the state X = {1,2,--- b}
with the following the initial distribution and the transition matrices resp.,

f(O) = (p(l),p(Q), o 7p(b))7 (64)

P, = (pn(ivj))bxb, n2>1 (65)
and ¢'(i, ) be the (i,7) element of Q'(1 =1,2,--- ,d). Denote

ha(i) = = > pu(i, §) log pnli, j) (66)
JEX
(i) == aq(i,j)log qi, j) (67)
JEX
Let h,, be column vector with ith element hy (i), hi(l =1,2,--- ,d) be d column vectors with ith elements

hi(i). Let Ri(l=1,2,--- ,d) be the same as in Lemma 1 and Ry be (an, ¢(n))-strongly ergodic. If

1 an+¢(n)
lim —— htars — R =0, 1=1,2,--- d, (68)
n—o0o ¢(n) t:az,,;rl
if |hnll and ||RY| is finite. Then
1 b
B fa, o (@) = =D 5> () ali5)log(ali, 1) (69)
) i=1 " 1=1 j=1
where 7w = (7'(1),74(2), -+ ,7!(b)) is the the unique stationary distribution determined by R;(I =
1,2, ,d)
Proof. Let gn(z,y) = —logpn(z,y) in Theorem 1, By (11) and the Lemma 2 of[10], we have for | =
1,2,---.d
an+é(n)
lim —— > |prayi(i, 5)log prari(i, 5) — (i, ) log ai(i, )] =0, Vi,j € x. (70)
n—oo ¢(n) T
By (70), (68) holds.
an+¢(n)
lim —— 7)) — (i, §)] =0 71
nggo ¢(n) k:;Jrl |pkd+l(zaj) %(%])' ( )
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(71) is equivalent to (11). Since

g2
Orélgxl{x(log r)?} = 4de (72)
thus
b b
Ellog pn (k1. &)) ZZ i, j)[log pu (i, )] P(n—1 = 1) < dbe™? (73)
By (73), (41) and Theorem 1, (69) follows. O

Theorem 3. Let{(,}52, be an (an, ¢(n))-asymptotic circular Markov chain ,and let R; be defined
as in Lemma 7, R; be (an, ¢(n))-strong ergodicity,(w, 7k, - 7) is the unique stationary distribution
determined by the stochastic matriz R;. Let {n,,n > 1} be an asymptotic circular Markov chain with initial
distribution (15) and transition matrices(16) under measure Q, If Hy = (h(i,7)),01 =1,2,--- ,d,i,j € X

are strictly positive transition matrices,then

7)), .. t1(i, j)
L) =YD Y —tli.j)log hG7) (74)
i=1 =1 j=1 ’
Proof. By (1.20)and (2.21),we have
d b b .
ﬂ .o tl(7’7j) ‘
o) = 0 2 Do
an+¢(n) b d b 1 ..
1 Pr(Er—1,7) T, /e ti(i,7)
BRI S TSI o of ol A WIS
‘d)( k an-+1 j=1 (5 —17]) =1 i=1 j=1 d hl(la])
an+d[¢(dn)] b an+¢(n) b
1 Pk (k—1,7) 1 Pk (e—1,7)
=== Pk (€k—1,J) log + P (€r—1,7) log ———<
eI ML D SR SR oy
d b . .
T .. tl(Z,j)
- —ti(i,5) log ———~=
2225 i)
. d ant+[25]-1 Pel€ari1,d) = 7l ti(4,7)
<|l7=7= D ravi—1,]) log = ————"-X — — (4, 5) log ——=
| TNL L ey og B SIS B s 1
an""d[%] b .
1 . Prk(Er—1,7)
+|— Pr(§p—1,7) log =—>——<
’¢(n) ka1 Jz:; @ (Ee-1,7)
a2
1 b d +[=~1-1 b o Prasa(is )
< mz '(fthfl)pth(l»J)lOgﬁ
n j=11=1 t=an, i=1 Ged+1\2, )
| b et By (4, 5)
- i(€tari—1)ti(4,7) log : ‘
¢(n)j§; = ; e hi(i, 5)
1 bod ant[2]-1 o t(i, §) d b b Wf . t(i, )
+ (;S(n) ZZ Z Z (gtd+l—1)tl(z7.]) 0g h (Z J) - Zzzgt (Z .]) 0og h (Z J)
J=1li=1  t=an  i=1 NS =1 i=1 j=1 NS
antd[ £ .
1 o1 Pe(€r—1,7)
+|— Pr(—1,7) log =—>——=<
’¢(n) ka1 Jz:; @ (Ek—1,7)
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b a7t+[T]_1 b

1 .. Ded+1(i, ) o ti(i, j)
< — 1; _ i,7)log ———= — t;(3,4) lo —
< ¢(n);; P ; (§eari-1)|Peati(i, J) & gt (i 7) (2, 5) & (i, )
e
DI Efzmlnﬂbmmﬁmw
- i(§td+i—1) — — | , —
=1 i=1 j=1 ¢(n) t=an ' d (i, j)
b an+¢(n) .
1 . pk(fkbj)‘
+ | == Pr(&r—1,7)log ————<
‘¢(n); Z;(n) #(8k-1,7) ar(Ek—1,7)
k:an“’d[T]"ﬂ'l
bod [(n) ant+[EH]-1 o o
[Fr]—1 1 . Dea+i(t,7) . ti(2,7)
< : Pra+1(1, J) log ————= — (i, j) log ———
222 g oy L frenCales tEg ThENleR G
NUNUNER e l t1(i, )
+ — 1i(&avi— )i" (i, j) log -~ )' (75)
DD rAEPIRE LT Wiig)
b an+p(n) .
1 . pk(ﬁkhj)‘
+ |7 Pk (Ek—1,7)log ————<
‘wmgg E%m WG dlos e )
k=an+d[&7~]4+1
b od [é(n) ant+[EH]-1 o o
(Fr]—1 1 . Ped+1(, ) o ti(2,7)
< : Pra+i(i, j)log === — #;(4, ) log ——=
222 g Emoy A frenCale ES i)
d b . .
anom) (Hw) ol N 1 (%)) ‘
+ — (i, ) lo —
22 2 | | [

b .
+ ‘IZ Z pk(fk—hj)logpk(gk_l’j)‘

° (e 1]
=1 k=an+d[%]+1 q (5 1 ])

By Defnition 2, it is easy to see that {(px(¢,7),qx(i,7))} absolute mean converge to (t;(7,4), hi(4,7))-
Letting p(z,y) =z log% (suppose (¢(0,y) = 0) in Lemma 5, we can easily prove ¢(z,y) is continuous at
(ti1(2,7), hi(i, 7)), we have by (1.11) and (1.12)

an+¢(n)

. .. ptd+l(i>j) .. tl(i>j)
lim —— i,7)log ————= —#;(¢,7) 1o —| =0. 76
B L [pantdlosy B6 - ul)loe g 65 (70
Since
pk(fk—l,j)logpk(fk_l’]»)’ = |pk(&k—1,7) log pr(§k—1,7) — Pr(§k—1,7) log qr.(Ek—1,7)]
qk(Er—1,7) (77)
< - —logT.
e
Hence
1 an o) Pr(Er—1,7)
lim — pe(€r_1,j)log ————21 =0 78
n—o0 ¢(n) ; Z ; e(-1,9) log @ (Ek—1,7) (78)
I=1 p=a,+d[ 25241
(34) follows from (33), (36) and (37). O

Corollary 4. Let P and Q) be two measure on (§2,F). Let (§,)52, be a nonhomogeneous Markov chain
under measure P. Let P = (p(i,j)),4,j € X be a transition matriz and let P be irreducible. If

an+é(n)
lim —— i,4) = p(i k)| = 0,¥i,j € § 79
Jim s k::zan [pi (i, §) = p(i, )| j (79)
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(w1, 72, ..., ) is the unique stationary distribution determined by the stochastic matriz P. Let (€n)S be
a nonhomogeneous Markov chain with initial distribution (15) and transition matrices (16) under measure
Q, (2.17) holds. Let

Q= (q(i,5)), q(i,j)>0, i,j€X, (80)

be another transition matriz, if for any i,j € X,{qn(i,7),n > 0} absolute mean converges to q(i,j), that
18,

1 an+¢(n)
lim —— i,9) —qli, k)| = 0,¥i,j € S 81
Jm s k;ﬂ 0 (6,7) — (i, k)| J (81)
then b
(i)
L(w) = w(i)p(i, j)log —/——=, 82
(€)= 303 wlipt ) g S (2)

Proof. Tt is easy to see that irreducible implies (a,, ¢(n))-strong-strong ergodicity. Letting d = 1 in
Theorem 3, this corollary follows. O
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