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Abstract We give different representations of the solutions of the Johnson equation with parame-
ters. First, an expression in terms of Fredholm determinants is given; we give also a representation
of the solutions written as a quotient of wronskians of order 2N . These solutions of order N depend
on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational
solutions expressed as a quotient of two polynomials of degree 2N(N + 1) in x, t and 4N(N + 1)
in y depending on 2N − 2 parameters.
Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8
real parameters and we study the patterns of their modulus in the plane (x, y) and their evolution
according to time and parameters ai and bi for 1 ≤ i ≤ 4.

Keywords: Johnson equation, Fredholm determinants, wronskians, rational solutions, rogue waves.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

We consider the Johnson equation which can be written in the form

(ut + 6uux + uxxx + u

2t
)x − 3uyy

t2
= 0, (1)

where subscripts x, y and t denote partial derivatives.
Johnson introduced this equation in a paper written in 1980 [1] to describe waves surfaces in shallow 

incompressible fluids [2,3]. This equation was widely accepted, and was later derived for internal waves in a 
stratified medium [4]. The physical model of this equation have the same degree of universality as the 
Kadomtsev-Petviashvili (KP) equation [5].

Johnson constructed the first solutions in 1980 [1]. Some time later in 1984, GolinŠko, Dryuma, and 
Stepanyants found other types of solutions [6]. Another approach to study this equation was given in 
1986 [7] by giving a connection between solutions of the (KP) equation and solutions of the Johnson 
equation. The use of Darboux transformation gave other type of solutions given in [8]. More recently, the 
extension to the elliptic case has been considered [9] in 2013.

In the following, we recall the representation of the solutions in terms of Fredholm determinants of 
order 2N depending on 2N − 1 parameters. We also recall the expression in terms of wronskians of order 
2N with 2N − 1 parameters. These representations allow to obtain an infinite hierarchy of solutions to 
the Johnson equation, depending on 2N −1 real parameters and rational solutions to the equation, when 
a parameter tends towards 0.

Here we construct rational solutions of order 5 depending on 8 parameters, and the representations 
of their modulus in the plane of the coordinates (x, y) according to the real parameters ai and bi for 
1 ≤ i ≤ 4 and time t.

The solutions are given without initial conditions nor boundary conditions.
We give three methods to construct solutions to the Johnson equation. The more efficient method 

to construct solutions of the Johnson equation is that corresponding to the representation in terms of
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degenerate determinants (the third one in the text, without limit) followed by that given in terms of 
wronskians. The less efficient is that given in terms of Fredholm determinants.

The method used to construct the figures given in the third section is that using the degenerate 
determinants (without limit, the third one).

2 Rational Solutions to the Johnson Equation of Order N Depending on
2N − 2 Parameters

2.1 Families of Rational Solutions of Order N Depending on 2N − 2 Parameters

We define real numbers λj such that −1 < λν < 1, ν = 1, . . . , 2N which depend on a parameter ϵ which 
will be intended to tend towards 0; they can be written as

λj = 1 − 2ϵ2j2, λN+j = −λj , 1 ≤ j ≤ N, (2)

The terms κν , δν , γν and xr,ν are functions of λν , 1 ≤ ν ≤ 2N ; they are defined by the formulas:

κj = 2
√

1 − λ2
j , δj = κjλj , γj =

√
1−λj

1+λj
,;

xr,j = (r − 1) ln γj−i
γj+i , r = 1, 3, τj = −12iλ2

j

√
1 − λ2

j − 4i(1 − λ2
j )

√
1 − λ2

j ,

κN+j = κj , δN+j = −δj , γN+j = γ−1
j ,

xr,N+j = −xr,j , , τN+j = τj j = 1, . . . , N.

(3)

eν 1 ≤ ν ≤ 2N are defined in the following way:

ej = 2i
(∑1/2M−1

k=1 ak(je)2 k+1 − i
∑1/2M−1
k=1 bK(je)2 k+1

)
,

eN+j = 2i
(∑1/2M−1

k=1 ak(je)2 k+1 + i
∑1/2M−1
k=1 bk(je)2 k+1

)
, 1 ≤ j ≤ N,

ak, bk ∈ R, 1 ≤ k ≤ N.

(4)

ϵν , 1 ≤ ν ≤ 2N are real numbers defined by:

ϵj = 1, ϵN+j = 0 1 ≤ j ≤ N. (5)

Let I be the unit matrix and Dr = (djk)1≤j,k≤2N the matrix defined by:

dνµ = (−1)ϵν

∏
η ̸=µ

(
γη + γν
γη − γµ

)
exp(κνx+ (κνy

12
− 2δν)yt+ 4iτνt+ xr,ν + eν). (6)

Then we have the following result:

Theorem 2.1 The function v defined by

v(x, y, t) = −2 |n(x, y, t)|2

d(x, y, t)2 (7)

where

n(x, y, t) = det(I +D3(x, y, t)), (8)

d(x, y, t) = det(I +D1(x, y, t)), (9)

and Dr = (djk)1≤j,k≤2N the matrix

dνµ = (−1)ϵν

∏
η ̸=µ

(
γη + γν
γη − γµ

)
exp(κνx+ (κνy

12
− 2δν)yt+ 4iτνt+ xr,ν + eν). (10)

is a solution to the Johnson equation (1), depending on 2N − 1 parameters ak, bh, 1 ≤ k ≤ N − 1 and ϵ.
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We give now the expressions of the solutions to the Johnson equation in terms of wronskians. For
this, we define the following notations:

ϕr,ν = sinΘr,ν , 1 ≤ ν ≤ N, ϕr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11)

with the arguments

Θr,ν = −iκνx
2 + i( −κνy

24 + δν)yt− i
xr,ν

2 + 2τνt+ γνw − i eν

2 , 1 ≤ ν ≤ 2N. (12)

We denote Wr(w) the wronskian of the functions ϕr,1, . . . , ϕr,2N defined by

Wr(w) = det[(∂µ−1
w ϕr,ν)ν, µ∈[1,...,2N ]]. (13)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined in (10).
Then we have the following statement:

Theorem 2.2 The function v defined by

v(x, y, t) = −2 |W3(ϕ3,1, . . . , ϕ3,2N )(0)|2

(W1(ϕ1,1, . . . , ϕ1,2N )(0))2

is a solution to the Johnson equation depending on 2N − 1 real parameters ak, bk and ϵ, with ϕrν defined
in (11)

ϕr,ν = sin( −iκνx
2 + i( −κνy

24 + δν)yt− i
xr,ν

2 + 2τνt+ γνw − i eν

2 ), 1 ≤ ν ≤ N,
ϕr,ν = cos( −iκνx

2 + i( −κνy
24 + δν)yt− i

xr,ν

2 + 2τνt+ γνw − i eν

2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3,

κν , δν , xr,ν , γν , eν being defined in (3), (2) and (4).

We can deduce rational solutions to the Johnson equation as a quotient of two determinants.
We use the following notations:

Xν = −iκνx
2

+ i(−κνy
24

+ δν)yt− i
x3,ν

2
+ 2τνt+ γνw − i

eν
2
,

Yν = −iκνx
2

+ i(−κνy
24

+ δν)yt− i
x1,ν

2
+ 2τνt+ γνw − i

eν
2
,

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3) and parameters eν defined by (4). We define the following
functions:

φ4j+1,k = γ4j−1
k sinXk, φ4j+2,k = γ4j

k cosXk,

φ4j+3,k = −γ4j+1
k sinXk, φ4j+4,k = −γ4j+2

k cosXk,
(14)

for 1 ≤ k ≤ N , and

φ4j+1,N+k = γ2N−4j−2
k cosXN+k, φ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

φ4j+3,N+k = −γ2N−4j−4
k cosXN+k, φ4j+4,N+k = γ2N−4j−5

k sinXN+k,
(15)

for 1 ≤ k ≤ N . We define the functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term Xk

is only replaced by Yk.

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4j

k cosYk,
ψ4j+3,k = −γ4j+1

k sin Yk, ψ4j+4,k = −γ4j+2
k cosYk,

(16)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sin YN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ2N−4j−5

k sin YN+k,
(17)
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for 1 ≤ k ≤ N .
The following ratio

q(x, t) := W3(0)
W1(0)

can be written as

q(x, t) = ∆3

∆1
=

det(φj,k)j, k∈[1,2N ]

det(ψj,k)j, k∈[1,2N ]
. (18)

The terms λj depending on ϵ are defined by λj = 1 − 2jϵ2. All the functions φj,k and ψj,k and their
derivatives depend on ϵ. They can all be prolonged by continuity when ϵ = 0.

We use the following expansions

φj,k(x, y, t, ϵ) =
N−1∑
l=0

1
(2l)!

φj,1[l]k2lϵ2l +O(ϵ2N ), φj,1[l] = ∂2lφj,1
∂ϵ2l

(x, y, t, 0),

φj,1[0] = φj,1(x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

φj,N+k(x, y, t, ϵ) =
N−1∑
l=0

1
(2l)!

φj,N+1[l]k2lϵ2l +O(ϵ2N ), φj,N+1[l] = ∂2lφj,N+1

∂ϵ2l
(x, y, t, 0),

φj,N+1[0] = φj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1.

We have the same expansions for the functions ψj,k.

ψj,k(x, y, t, ϵ) =
N−1∑
l=0

1
(2l)!

ψj,1[l]k2lϵ2l +O(ϵ2N ), ψj,1[l] = ∂2lψj,1
∂ϵ2l

(x, y, t, 0),

ψj,1[0] = ψj,1(x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

ψj,N+k(x, t, ϵ) =
N−1∑
l=0

1
(2l)!

ψj,N+1[l]k2lϵ2l +O(ϵ2N ), ψj,N+1[l] = ∂2lψj,N+1

∂ϵ2l
(x, y, t, 0),

ψj,N+1[0] = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..

Then we get the following result:

Theorem 2.3 The function v defined by

v(x, y, t) = −2
| det((njk)j,k∈[1,2N])|2

det((djk)j,k∈[1,2N])2 (19)

is a rational solution to the Johnson equation (1), where

nj1 = φj,1(x, y, t, 0), 1 ≤ j ≤ 2N njk = ∂2k−2φj,1
∂ϵ2k−2 (x, y, t, 0),

njN+1 = φj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N njN+k = ∂2k−2φj,N+1
∂ϵ2k−2 (x, y, t, 0),

dj1 = ψj,1(x, y, t, 0), 1 ≤ j ≤ 2N djk = ∂2k−2ψj,1
∂ϵ2k−2 (x, y, t, 0),

djN+1 = ψj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N djN+k = ∂2k−2ψj,N+1
∂ϵ2k−2 (x, y, t, 0),

2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(20)

The functions φ and ψ are defined in (14),(15), (16), (17).
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3 Explicit Expression of Rational Solutions of Order 5 Depending on 8
Parameters

We construct rational solutions to the Johnson equation of order 5 depending on 8 parameters. But,
because of the length of the expression, we cannot get them in this text.

We give patterns of the modulus of the solutions in the plane (x, y) of coordinates in function of the
parameters ai and bi, for 1 ≤ i ≤ 4 and time t.

The (x; y) plane is the horizontal plane. To shorten the text, one cut certain characters of the figures
and one made appear only the letter y of the (x; y) plane.

Figure 1. Solution of order 5 to (1), on the left for t = 0; in the center for t = 0, a1 = 103; on the right for t = 0,
a2 = 103; all other parameters not mentioned equal to 0.

Figure 2. Solution of order 5 to (1), on the left for t = 0, a3 = 103; in the center for t = 0, a4 = 103; on the right
for t = 0, b1 = 103; all other parameters not mentioned equal to 0.
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Figure 3. Solution of order 5 to (1), on the left for t = 0, b2 = 103; in the center for t = 0, b3 = 103; on the right
for t = 0, b4 = 103; all other parameters not mentioned equal to 0.

Figure 4. Solution of order 5 to (1), on the left for t = 0, 01, a1 = 103; in the center for t = 0, 1, a2 = 103; on
the right for t = 1, b1 = 103; all other parameters not mentioned equal to 0.

Figure 5. Solution of order 5 to (1), on the left for t = 0, 01, a2 = 103; in the center for t = 0, 1, a2 = 103; on
the right for t = 1, a2 = 10; all the other parameters to equal to 0.
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Figure 6. Solution of order 5 to (1), on the left for t = 0, 01, a3 = 103; in the center for t = 0, 1, a3 = 103; on
the right for t = 1, a3 = 10; all the other parameters to equal to 0.

Figure 7. Solution of order 5 to (1), on the left for t = 0, 01, a4 = 103; in the center for t = 0, 1, a4 = 103; on
the right for t = 1, a4 = 10; all the other parameters to equal to 0.

Figure 8. Solution of order 5 to (1), on the left for t = 0, 01, b1 = 10; in the center for t = 0, 1, b4 = 10; on the
right for t = 1, b1 = 10; all the other parameters to equal to 0.
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Figure 9. Solution of order 5 to (1), on the left for t = 0, 01, b2 = 103; in the center for t = 0, 1, b2 = 10; on the
right for t = 1, b2 = 10; all the other parameters to equal to 0.

Figure 10. Solution of order 5 to (1), on the left for t = 0, 01, b3 = 103; in the center for t = 0, 1, b3 = 103; on
the right for t = 1, b3 = 103; all the other parameters to equal to 0.

Figure 11. Solution of order 5 to (1), on the left for t = 0, 01, b4 = 103; in the center for t = 0, 1, b4 = 103; on
the right for t = 1, b4 = 10; all the other parameters to equal to 0.
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In these constructions, we note that the initial rectilinear structure becomes deformed very quickly 
as time t increases. The heights of the peaks also decrease very quickly according to time t and of the 
various parameters. Because of the structure of the polynomials, one notices that the modulus of these 
solutions tend towards value 2 when time t and variables x and y tend towards the infinite.

The preceding solutions depend on parameters aj and bj for 1 ≤ j ≤ 4. The Johnson equation allows 
explaining the existence of the horseshoelike solitons and multisoliton solutions quite naturally. The 
horseshoe multisoliton solutions correspond very well to real waves observed in thin films of shallow water 
being cooled along an inclined plane.

It should be relevant to give a physical meaning of these parameters and to give an explanation of 
the evolution of the figures according to time in the (x; y) plane.

4 Conclusion

We succeed in obtaining rational solutions to the Johnson equation depending on 2N −2 real parameters. 
These solutions can be expressed in terms of a ratio of two polynomials of degree 2N(N + 1) in x, t and 
4N(N + 1) in y. Here we have made the study of rational solutions of order 5 depending on 8 parameters 
and tried to describe the structure of those rational solutions.

In the (x; y) plane of coordinates, various structures appear. But, contrary to the rational solutions of 
the NLS or KP equations, there are not well defined structures which appear according to the parameters 
ai or bi. Thus, one cannot carry out a classification of these solutions here, according to the parameters 
by means of their module in the plan (x, y). It would be important to better understand these structures.
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