
Asymptotic Stability for the Initial-Boundary Value Problem of 
a Semi-linear Wave Equation with Damping

Junmei Su

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Email: 597438222@qq.com

Abstract In this paper, we study the stability of the solutions to the initial boundary value
problem of a semi-linear wave equation with damping vtt + vt + f(vx) = vxx, on a half line R+.
We show that the solution to the initial-boundary value problem exists as a whole provided that
initial datas ∥(v0 − v̄)(x)∥2 + ∥v1(x)∥1 and the strength of wave δ = |v+ − v−| are sufficiently
small, In addtion, when the time is sufficiently large, the solution converges to the diffuse wave
v̄( x√

1+t
) at a certain speed, where v̄( x√

1+t
) is a self-similar solution of one dimension equation

v̄t + C0v̄2
x = v̄xx, v(±∞, t) = v±, v+ ̸= v−,with C0 = 1

2
∂2f(ξ)

∂ξ2
1

∣∣
ξ=0

.

Keywords: semi-linear wave equation, nonlinear diffusion wave, initial-boundary value problem,
convergence rate, energy estimate.

1 Introduction

In this paper,we consider the initial-boundary value problem of a semi-linear wave equation with damping

vtt + vt + f(vx) = vxx, (1.1)

with the initial datas
v(x, 0) = v0(x), vt(x, 0) = v1(x), (1.2)

where (x, t) ∈ R+ × R+; f is a given smooth function with f(0) = f ′(0) = 0; and the initial datas have
limits at infinity, that is,

v (0, 0) = v−, v (+∞, 0) = v+, v1(0, 0) = v1(+∞, 0) = 0.

where v± are given unequal positive constants, and the boundary condition

v (0, t) = v− (1.3)

In this paper, we concern about the asymptotic stability of diffusion wave of the initial-boundary
value problem of a semi-linear wave equation with damping. From Darcy’s law and asymptotic analyses,
it is well known that the left of (1.1) decays faster than the right. Generally speak, the corresponding
solution shows some decay properties in large time behavior, when an evolution equation has a damping
term. Especially when the end states is v− ̸= v+, it is usually accompanied by this wave phenomenon. In
other words, the solution of the evolution equation may tends to a diffusion wave as the time t → +∞.
In fact, many authors have confirmed this conclusion. For the Cauchy problem, In [7], Hsiao and Liu
firstly proved that the asymptotic behavior of the solution of a hyperbolic conservation equation with
damping on the nonlinear diffusion wave under some smallness conditions; Nishihara [6] obtained a
better convergence rate in L2 and L∞ norm about the same problem. Zhao showed that for a certain
class of given large initial data, the p-system with frictional damping admitted a unique global smooth
solution and such a solution tended time-asymptotically in [5], at the Lp(2 ≤ p ≤ ∞) decay rates to
the corresponding nonlinear diffusion wave. For n-dimension case, Huang, Mei and Wang [4] studied the
n-dimensional bipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations
and proved the stability of the nonlinear diffusion wave for this model. For other related results about
Cauchy problem, one can refer to [1,2,3,10,13,15] and some references therein.
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For the initial-boundary value problem on a half line R+, Nishihara and Yang [12] considered the large
time behavior of the solution of the p-system with linear damping respectively under Dirichlet boundary
condition (u(0, t) = 0) and the Neumann boundary condition (ux(0, t) = 0). Precisely, in the case of null-
Dirichlet boundary condition, They obtained the optimal convergence rate by using the Green function
of the diffusion equation with constant coefficients, and proved the solution (v, u) tend to (v+, 0) as t
tends to infinity. In the case of null-Neumann boundary condition, they proved the solution v(x, t) tends
to diffusion wave v̄(x, t), and obtained the optimal convergence rate when v0(0) = v+. For the asymptotic
behavior of solutions to the other equations with nonlinear damping, we refer to [8],[9],[11],[12] and some
references therein.

In light on equation (1.1), We have already studied the well-posedness and large time behavior of the
solution of the Cauchy problem. In this paper, we further guess that there is a wave phenomenon for the
initial-boundary value problem. Precisely, We are interested in the global solutions in time of the initial-
boundary value problem of the semi-linear wave equation (1.1)∼(1.3) and the asymptotic stability to
diffusion wave v̄( x√

1+t
), as t tends to +∞, where v̄( x√

1+t
) is a self-similar solution of the one-dimensional

quaslinear parabolic equation {
v̄t + C0v̄2

x1
= v̄x1x1 ,

v̄(x1, t) → v±, as x → ±∞,
(1.4)

where C0 = 1
2

d2f(ξ)
dξ2

∣∣
ξ=0

.

Remark 1.1 By the Hopf-Cole transformation v̄ = − 1
C0

ln u, (1.4) is equivalent to heat equation

ut = ux1x1 , (1.5)

which has a self-similar solution u( x1√
1+t

).

In [7], some fundamental dissipative properties of u( x√
1+t

) have been given clearly. In fact, by the
above Hopf-cole transformation, One can easily know that v̄( x√

1+t
) has the same decay properties which

play a role in the process of proof, So we present it in the Lemma below:

Lemma 1.1 For 2 ≤ p < +∞ and positive constant σ depending on v+ and v−, v̄( x√
1+t

) satisfies that∥∥∂k
x∂l

tv̄
∥∥

Lp(R) = O(1)
∣∣v+ − v−

∣∣(1 + t)− k
2 −l+ 1

2p , (1.6)

∂k
x∂l

tv̄ = O(1)
∣∣v+ − v−

∣∣(1 + t)− k
2 −lω(x, t), (1.7)

where k = 1, 2, ...; l = 0, 1, 2 and ω(x, t) = exp{− σx2

1+t }.

The main purpose of this paper is to show the global existence and nonlinear stability of diffusion
wave v̄( x√

1+t
) for the initial-boundary value problem (1.1)∼(1.3). Concretely, we establish a perturbation

equation for v(x, t) − v̄( x√
1+t

), then do some estimates on the perturbation equation by applying the
elementary time-weighted energy estimate. However, it exists a lot of difficulties at the actual calculation
due to the boundary effect and time-depending damping. One will find that the important inequality
used in [1] does not work in the estimation of the term

∫ t

0
∫
R+

(1 + t)−1φ2ω2, Fourtunately, we can use
the Poincaré inequality. Our main theorem can be stated as follows:

Theorem 1.1 Suppose that f(0) = f ′(0) = 0 and (v0, v1) ∈ H2 × H1, then there exists a constant δ̄ > 0
such that if

∥(v0 − v̄)(x)∥H2(R+) + ∥v1(x)∥H1(R+) + δ ≤ δ̄, (1.8)

the initial-boundary value problem (1.1) exists a unique global solution v(x, t) satisfying

v(x, t) − v̄( x√
1+t

) ∈ C([0, ∞), H2(R+)),

vx(x, t) − v̄x( x√
1+t

) ∈ L2([0, ∞), H1(R+)),

vt(x, t) − v̄t( x√
1+t

) ∈ C([0, ∞), H1(R+)) ∩ L2([0, ∞), H1(R+)),
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moreover, for any k = 1, 2, we have∥∥∂k
xv(·, t) − ∂k

x v̄(·, t)
∥∥

L2(R+) ≤ Cδ̄(1 + t)− k
2 , (1.9)

and

∥v(·, t) − v̄(·, t)∥L∞(R+) ≤ Cδ̄(1 + t)− 1
4 , (1.10)

where δ = |v+ − v−|.

Notations and preliminaries: Throughout this paper, we denote some positive constants only
depending on the function f by C and O(1) without any confusion. For function spaces, Lp(R+) is
Lebesgue space of measurable function on R+ whose p-th powers are integrable, with its norm

∥f∥Lp(R+) =
(∫

Rn |f |p dx
) 1

p , 1 ≤ p < ∞,

and the norm simply denote by ∥·∥ when p = 2. Denote the usual l-th order Sobolev spaces on R+ by
H l(R+) with its norm

∥f∥l = (
l∑

k=0

∥∥Dk
xf
∥∥2) 1

2 ,

In particular, ∥·∥0 = ∥·∥L2 = ∥·∥ when l = 0. Generally, the integral region R+ will be omitted for concise
layout.

2 Priori Estimates

In this section, we proceed to establish some estimates by energy method which prepare for the proof of
Theorem 1.

Let φ = v(x, t) − v̄( x√
1+t

), where v̄( x√
1+t

) is the self-similar solution of (1.4), which approximates the
equation (1.1) provided that it satisfies

v̄t + f(v̄x1) = v̄x1x1 + E, (2.1)

where

E =: f(v̄x1) − C0v̄2
x1

= O(1)
∣∣v+ − v−

∣∣3(1 + t)− 3
2 e−

3σx2
1

(1+t) ,

thus, φ solves the following initial-boundary value problem:φtt + φt − φxx = F − v̄tt − E,
(φ, φt)(x, 0) := (φ0, φ1)(x) = (v̂0 − v̄, v̂1)(x)
φ (x, t)|x=0 = 0.

(2.2)

where
F = −f(φx + v̄x) + f(v̄x),

To make the proof of Theorem 1.1 concise, we divide it into the local existence and priori estimate,
where the local existence theorem can be proved by standard method, we omit it here. we focus our
attention on the priori estimates. For the end, we restrict ourselves to deal with the problem under the
following assumption:

Assumption 2.1 For t ∈ [0, T ], φ ∈ X(0, T ) is a solution of (2.2), we assume that

N(t) := sup
0≤t≤T

{
2∑

k=0

(1 + t)k
∥∥∂k

xφ (·, t)
∥∥2 +

1∑
k=0

(1 + t)k+1 ∥∥∂k
xφt (·, t)

∥∥2

}
≤ ε2. (2.3)

where ε is a small positive constant.
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Proposition 2.1 Suppose that φ ∈ X(x, t) is a solution of (2.2),then there are suitable small positive
constant δ, it holds that

∥φ (t)∥2
2 +∥φt (t)∥2

1 +
∫ t

0

(
∥φx(τ)∥2

1 + ∥φt(τ)∥2
1

)
dτ ≤ C ∥φ0∥2

2 + C ∥φ1∥2
1 + Cδ2, (2.4)

where C is independent of T .

To proof proposition 2.1 , we establish a series of estimates of φ .

Lemma 2.1 Suppose that φ ∈ X(x, t) is a solution of (2.2), then under the condition of Theorem 1.1,
there are suitable small positive constant δ, it holds that

∥φ (t)∥2
1 +∥φt (t)∥2 +

∫ t

0
∥(φt, φx) (τ)∥2dτ ≤ C

(
∥φ0∥2

1 + ∥φ1∥2
)

+ Cδ2, (2.5)

where C is independent of T .

Proof. Multiplying (2.2)1 by φ, and using integration by parts, we have

1
2

∥φ(t)∥2 +
∫ t

0
∥φx(τ)∥2dτ +

∫ t

0

∫
R+

Fφdxdτ +
∫ t

0

∫
R+

v̄ttφdxdτ

=1
2

∥φ0∥2+
∫ t

0
∥φt(τ)∥2dτ −

∫ t

0

∫
R+

Eφdxdτ −
∫

R+

φφtdx

∣∣∣∣∣
t

0

(2.6)

Now, we estimate the right terms one by one. It follows by the Cauchy-Schwarz inequality, (2.3) and
E = O(1)δ3(1 + t)− 3

2 ω3 that∫
R+

φφtdx

∣∣∣∣∣
t

0

≤ ε∥(φ, φt)(t)∥2 + Cε∥(φ, φt) (x, 0)∥2. (2.7)

and ∫ t

0

∫
R+

Eφ+v̄ttφdxdτ ≤ Cδ∥φ∥L∞

∫ t

0

∫
R+

(1 + t)− 3
2 ωdxdτ ≤ Cδ2, (2.8)

since
∫ t

0
∫
R(1 + τ)−sωddx1dt is bounded for any d > 0, and s > 3

2 .
On the other hand, By use Taylor formula and f(0) = f ′(0) = 0, we get

|F | = |f(φx + v̄x) − f(v̄x)| =
∣∣∣f ′(v̄x)φx + O(1)|φx|2

∣∣∣
=O(1)

∣∣φ2
x

∣∣+ O(1)δ(1 + t)− 1
2 |φxω| ,

(2.9)

thus, by using priori assumption, Cauchy-Schwarz inequality and boundary condition (1.3), we have∫ t

0

∫
R+

Fφdxdτ ≤C

∫ t

0

∫
R+

(
φ2

x |φ| +δ(1 + τ)− 1
2 |φ| |φxω|

)
dxdτ

≤C (ε + δ)
∫ t

0
∥φx∥2dτ + Cδ

∫ t

0

∫
R+

(1 + t)−1
φ2ω2dxdτ

≤C (ε + δ)
∫ t

0
∥φx∥2dτ + Cδ

∫ t

0

∫
R+

x

(1 + t)
e− 2σx2

1+t ∥φx∥2
L2(R)dxdτ

≤C (ε + δ)
∫ t

0
∥φx∥2dτ + Cδ

∫ t

0
∥φx∥2dτ

≤C (ε + δ)
∫ t

0
∥φx∥2dτ+Cδ2.

(2.10)
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where in the third inequality, the following Poincaré inequality has been used

|φ (x, t)| ≤ |φ (0, t)| + x
1
2 ∥φx∥L2(R), x ∈ R. (2.11)

Substituting (2.7), (2.8) and (2.10) into (2.6), we have

∥φ(t)∥2 +
∫ t

0
∥φx(τ)∥2dτ ⩽ Cε∥φt(t)∥2 +

∫ t

0
∥φt∥2dτ + C

(
∥φ0∥2 + ∥φ1∥2 + δ2

)
. (2.12)

Next, we estimate ∥φt∥. Multiplying (2.2)1 by φt, and integrating the result on [0, t] × R+, we have

1
2

∥(φx, φt) (t)∥2 +
∫ t

0
∥φt (τ)∥2dτ +

∫ t

0

∫
R+

Fφtdxdτ +
∫ t

0

∫
R+

v̄ttφtdxdτ

=1
2

∥(φx, φt) (x, 0)∥2 −
∫ t

0

∫
+

Eφtdxdτ

(2.13)

By using (2.9), E = O(1)δ3(1 + t)− 3
2 ω3 and Cauchy-Schwarz inequality, we have∣∣∣∣∣

∫ t

0

∫
R+

Fφtdxdτ

∣∣∣∣∣ ≤C

∫ t

0

∫
R+

(
φ2

x |φt| +δ(1 + t)− 1
2 |φt| |φxω|

)
dxdτ

≤C (ε + δ)
∫ t

0
∥(φx, φt) (τ)∥2dτ,

(2.14)

and ∫ t

0

∫
R +

Eφtdxdτ

⩽Cδ3
∫ t

0

∫
R +

(1 + t)− 3
2 ω3φtdxdτ

⩽Cδ

∫ t

0
∥φt (τ)∥2dτ + Cδ2,

(2.15)

Thus, choose suitable small positive constant δ, we have

∥(φx, φt) (t)∥2 +
∫ t

0
∥φt (τ)∥2dτ

≤C (ε + δ)
∫ t

0
∥φx (τ)∥2dτ + C∥(φx, φt) (x, 0)∥2 + Cδ2.

(2.16)

combining (2.12) and (2.16), then Lemma 2.1 have been proved.

Lemma 2.2 Suppose that φ ∈ X(x, t) is a solution of (2.2), then under the condition of Theorem 1.1,
there is a suitable small positive constant δ, such that φ satisfies

∥φx (t)∥2
1 +∥φxt (t)∥2 +

∫ t

0
∥(φxt, φxx) (τ)∥2dτ ≤ C ∥φ0∥2

2 + C ∥φ1∥2
1 + Cδ2, (2.17)

where C is independent of T .

Proof. By differentiating both sides of equation (2.2)1 with respect to x, we obtain

φxtt + φxt + v̄xtt + Fx = φxxx − Ex, (2.18)
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First, multiplying (2.18) by φx, and integrating the result on [0, t] × R+, we have

1
2

∫
R +

(
φ2

x + 2φxtφx

)
dx

∣∣∣∣∣
t

0

+
∫ t

0

∫
R +

φ2
xxdxdτ

= −
∫ t

0

∫
R +

v̄xttφxdxdτ −
∫ t

0
φxxφxdτ

∣∣∣∣
x=0

+
∫ t

0

∫
R+

(
φ2

xx + φ2
xt

)
dτ

−
∫ t

0

∫
R +

Fxφxdxdτ −
∫ t

0

∫
R +

Exφxdxdτ,

(2.19)

By Cauchy-Schwarz inequality, and (2.5), we have∫ t

0

∫
R+

Fxφxdxdτ

≤C (ε + δ)

(∫ t

0

∫
R+

(1 + t)−1|φx|2dxdτ +
∫ t

0

∫
R+

(1 + t)− 1
2 |φxxφx| dxdτ

)

≤C (ε + δ)
∫ t

0
∥φx∥2

1dτ,

(2.20)

where in the first inequality,we use the following formula

|Fx| = |(f (φx + v̄x) − f (v̄x))x|
≤ |f ′ (φx + v̄x) (φxx + v̄xx) − f ′ (v̄x) v̄xx|

≤Cδ(1 + t)−1 |φx| + Cδ(1 + t)− 1
2 |φxx| .

(2.21)

Since |Ex| = O (1) δ3(1 + t)−2
ω2, we have∫ t

0

∫
R+

Exφxdxdτ

≤Cδ

∫ t

0

∫
R+

(1 + t)−2 ∣∣ω2∣∣ |φx| dxdτ

≤Cδ

∫ t

0
∥φx∥2dτ + Cδ2.

(2.22)

In light of the boundary term, Noting that (1.3), and substituting it into (2.2), we get

φxx|x=0 =
(
f(φx + v̄x) − f(v̄x) + C0v̄2

x + v̄tt

)∣∣
x=0

=O (1) φx
2 + O (1) φxv̄x + (C0 + O(1))v̄2

x + v̄tt.
(2.23)

On the other hands, according to Sobolev inequality, i.e. for any t ∈ [0, T ], we have

|φ (x, t)| ≤ C ∥φx∥ ∥φxx∥ ≤ C∥φx∥1. (2.24)

Thus, by using (2.23), (2.24) and (1.7), we have∫ t

0
φxxφx

∣∣∣∣
x=0

dτ

≤C

∫ t

0
φxt

(
φx

2 + φxv̄x + v̄2
x + v̄tt

)∣∣∣∣
x=0

dτ

⩽C (ε + δ)
∫ t

0
φxdτ

∣∣∣∣
x=0

⩽C (ε + δ)
∫ t

0
∥φx∥2

1 dτ ,

(2.25)
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To sum up, we have

∥φx (t)∥2 +
∫ t

0
∥φxx∥2dτ

≤C∥φxt (t)∥2 + C

∫ t

0
∥φxt∥2dτ + C∥(φx, φxt) (x, 0)∥2 + Cδ2,

(2.26)

Next, we proceed to estimate ∥φxt (t)∥. Multiplying (2.18) by φxt, and integrating the result on [0, t]×R+,
we have

1
2

∥(φxx, φxt) (t)∥2 +
∫ t

0
∥φxt (τ)∥2dτ +

∫ t

0

∫
+

v̄xttφxtdxdτ +
∫ t

0

∫
+

Fxφxtdxdτ

=1
2

∥(φxx, φxt) (x, 0)∥2 −
∫ t

0
φxxφxtdτ

∣∣∣∣
x=0

−
∫ t

0

∫
+

Exφxtdxdτ

(2.27)

We only estimate the boundary term
∫ t

0 φxxφxtdτ
∣∣∣
x=0

. The estimation of other terms are similar to
(2.20) and (2.22). By using Integration by parts, (2.23) and Sobolev inequality, we have∫ t

0
φxxφxt

∣∣∣∣
x=0

dτ

=
∫ t

0
φxt

(
f(φx + v̄x) − f(v̄x) + C0v̄2

x + v̄tt

)∣∣∣∣
x=0

dτ

≤C

∫ t

0
φxt

(
φx

2 + φxv̄x + v̄2
x + v̄tt

)∣∣∣∣
x=0

dτ

⩽C

∫ t

0

(
φ3

x

3

)
t

+
(
φ2

x

)
t
v̄x + φxtv̄

2
x + φxtv̄tt

∣∣∣∣
x=0

dτ

⩽−Cφx

(
φ2

x

3
+ φxv̄x + v̄2

x + v̄tt

)∣∣∣∣
x=0

+ C

∫ t

0
φx (φxv̄xt + 2v̄xv̄xt + v̄ttt)

∣∣∣∣
x=0

dτ

⩽C (ε + δ)
(

∥φx (t)∥2
1 +

∫ t

0
∥φx (τ)∥2

1 dτ

)
.

(2.28)

Thus, substituting (2.28) into (2.27), and combining (2.26), we finish the proof.
Remark 2.1 one can deduced Proposition 2.1 immediately provided that ε and δ are small enough by
combining Lemma 2.1 and Lemma 2.2.

Until now, it has been proved that the diffusion wave v̄( x√
1+t

) is asymptotically stable to the solution
v̂ of the initial-boundary value problem (2.2), as t tends to infinity. Next we will show the decay rate in
time of the solution φ(x, t).
Lemma 2.3 Suppose that φ ∈ X(x, t) is a solution of (2.2), then under the condition of Theorem 1.1,
there is a suitable small positive constant δ, such that φ satisfies

(1 + t) ∥(φx, φt) (t)∥2 +
∫ t

0

∫
R+

(1 + τ) φ2
t dxdτ ⩽ C

(
∥φ0∥2

1 + ∥φ1∥2
)

+ Cδ2. (2.29)

where C is independent of T .
Proof. Multiplying (2.2)1 by (1 + t)φt, and using integration by parts, we have

1
2

∫
R+

(1 + τ)
(
φ2

x + φ2
t

)
dx

∣∣∣∣∣
t

0

+
∫ t

0

∫
R+

(1 + τ) φ2
t dxdτ = 1

2

∫ t

0

∫
R+

(
φ2

x + φ2
t

)
dxdτ

−
∫ t

0

∫
R+

(1 + τ) v̄ttφtdxdτ −
∫ t

0

∫
R+

(1 + τ) F φtdxdτ −
∫ t

0

∫
R+

(1 + τ) Eφtdxdτ

(2.30)
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By applying Cauchy-Schwarz inequality and (2.4),we have∫ t

0

∫
R+

(1 + τ) v̄ttφtdxdτ ⩽Cδ

∫ t

0

∫
R+

(1 + τ)−1 |φtω| dxdτ

⩽Cδ

∫ t

0

∫
R+

(1 + τ) φ2
t dxdτ + Cδ2.

(2.31)

∫ t

0

∫
R+

(1 + τ) Fφtdxdτ

⩽C

∫ t

0

∫
R+

(1 + τ)
∣∣φ2

xφt

∣∣ dxdτ + δ

∫ t

0

∫
R+

(1 + τ)
1
2 |φxωφt| dxdτ

⩽C(ε + δ)
∫ t

0

∫
R+

(1 + τ) φ2
t dxdτ + Cδ2.

(2.32)

and ∫ t

0

∫
R+

(1 + τ) Eφtdxdτ ⩽Cδ

∫ t

0

∫
R+

(1 + τ)− 1
2 ω3φtdxdτ

⩽Cδ

∫ t

0

∫
R+

(1 + τ) φ2
t dxdτ + Cδ2.

(2.33)

substituting (2.31)∼(2.33) into (2.30), and choosing suitable small ε and δ, we complete the proof.

Lemma 2.4 (Decay estimates) Suppose that φ ∈ X(x, t) is a solution of (2.2), then under the condition
of Theorem 1.1, there exists a suitable small positive constant δ, it holds that

(1 + t)2∥(φxx, φxt) (t)∥2 +
∫ t

0
(1 + τ) φ2

xxdxdτ +
∫ t

0
(1 + τ)2

φ2
xtdxdτ

⩽C ∥φ0∥2
2 + C ∥φ1∥2

1 + Cδ2.

(2.34)

where C is independent of T .
Proof. Multiplying (2.18) by (1 + t)φx, and using integration by parts, we have

1
2

∫
R+

(1 + τ)
(
φ2

x + 2φxtφx

)
dx

∣∣∣∣∣
t

0

+
∫ t

0

∫
R+

(1 + τ) φ2
xxdxdτ

=
∫ t

0

∫
R+

(1 + τ) φ2
xtdxdτ + 1

2

∫
R+

φ2
xdx

∣∣∣∣∣
t

0

+ 1
2

∫ t

0

∫
R+

φ2
xdxdτ −

∫ t

0
(1 + τ) φxxφxdτ

∣∣∣∣
x=0

−
∫ t

0

∫
R+

(1 + τ) v̄ttφxdxdτ −
∫ t

0

∫
R+

(1 + τ) F φxdxdτ −
∫ t

0

∫
R+

(1 + τ) Eφxdxdτ

(2.35)

we only estimate the boundary terms similarly, by Sobolev inequality and the priori assumption, we
have ∫ t

0
(1 + τ) φxxφx

∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ) φx

(
f(φx + v̄x) − f (v̄x) + C0v̄2

x + v̄tt

)∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ) φx

(
O (1) (φx + v̄x)2 + C0v̄3

x + v̄tt

)∣∣∣∣
x=0

dτ

⩽C (ε + δ)
∫ t

0
φx

∣∣∣∣
x=0

dτ

⩽C (ε + δ)
∫ t

0
∥φx (τ)∥2

1 dτ ,

(2.36)
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substituting (2.36) into (2.35), we have

(1 + t) ∥φx (t)∥2 +
∫ t

0
(1 + τ) φ2

xxdxdτ

⩽C ∥φ0∥2
2 + C ∥φ1∥2

1 + C

∫ t

0
(1 + τ) φ2

xtdxdτ + Cδ2.

(2.37)

Next, Multiplying (2.18) by (1 + t)φxt, and using integration by parts, we have

∫
R+

(1 + τ)
(
φ2

xt + φ2
xx

)
dx

∣∣∣∣∣
t

0

+ 2
∫ t

0

∫
R+

(1 + τ) φ2
xtdxdτ

=
∫ t

0

∫
R+

(
φ2

xx + φ2
xt

)
dxdτ − 2

∫ t

0
(1 + τ) φxxφxtdτ

∣∣∣∣
x=0

− 2
∫ t

0

∫
R+

(1 + τ) v̄ttφxdxdτ

− 2
∫ t

0

∫
R+

(1 + τ) F φxdxdτ − 2
∫ t

0

∫
R+

(1 + τ) Eφxdxdτ

(2.38)

according to boundary condition and Sobolev inequality ,we have∫ t

0
(1 + τ) φxxφxt

∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ) φxt

(
f(φx + v̄x) − f(v̄x) + C0v̄2

x + v̄tt

)∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ) φxt

(
O (1) (φx + v̄x)2 + C0v̄2

x + v̄tt

)∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ)

(
O (1)

(
φ3

x

3

)
t

+ O (1)
(
φ2

x

)
t
v̄x + (O (1) + C0) φxtv̄

2
x + φxtv̄tt

)∣∣∣∣
x=0

dτ

= − (1 + τ) φx

(
O (1) φ2

x

3 + O (1) φxv̄x + (O (1) + C0) v̄2
x + v̄tt

)∣∣∣∣
x=0

∣∣∣∣t
0

+
∫ t

0
(1 + τ) φx (O (1) φxv̄xt + 2 (O (1) + C0) v̄xv̄xt + v̄ttt)

∣∣∣∣
x=0

dτ

+
∫ t

0
φx

(
O (1) φ2

x + O (1) φxv̄x + (O (1) + C0) v̄2
x + v̄tt

)∣∣∣∣
x=0

dτ

⩽C (ε + δ) (1 + t)
1
2 ∥φx (t)∥ ∥φxx (t)∥ + C (ε + δ)

∫ t

0
∥φx (τ)∥ ∥φxx (τ)∥ dτ

⩽C (ε + δ) (1 + t) ∥φxx (t)∥2 + C (ε + δ)
∫ t

0
∥φx (τ)∥2

1 dτ + Cδ2.

(2.39)

substituting (2.39) into (2.38), we have

(1 + t) ∥(φxx, φxt) (t)∥2 +
∫ t

0
(1 + τ) φ2

xtdxdτ ⩽ C
(

∥φ0∥2
2 + ∥φ1∥2

1

)
+ Cδ2. (2.40)

Combining (2.37) and (2.40), we obtain

(1 + t) ∥φx (t)∥2
1 + (1 + t) ∥φxt (t)∥2 +

∫ t

0
(1 + τ)

(
φ2

xx + φ2
xt

)
dxdτ

⩽C
(

∥φ0∥2
2 + ∥φ1∥2

1

)
+ Cδ2.

(2.41)
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Finally, multiplying (2.18) by (1 + t)2φxt, and using integration by parts, we have

1
2

∫
R+

(1 + τ)2 (φ2
xx + φ2

xt

)
dx

∣∣∣∣∣
t

0

+
∫ t

0

∫
R+

(1 + τ)2φ2
xtdxdτ

=
∫ t

0

∫
R+

(1 + τ)
(
φ2

xx + φ2
xt

)
dxdτ −

∫ t

0
(1 + τ)2φxxφxtdτ

∣∣∣∣
x=0

−
∫ t

0

∫
R+

(1 + τ)2v̄ttφxdxdτ −
∫ t

0

∫
R+

(1 + τ)2F φxdxdτ

−
∫ t

0

∫
R+

(1 + τ)2Eφxdxdτ

(2.42)

By Sobolev inequality and Lemma 1.1, and Poincaré inequality ,we have

∫ t

0
(1 + τ)2

φxxφxt

∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ)2

φxt

(
f(φx + v̄x) − f (v̄x) + C0v̄2

x + v̄tt

)∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ)2

φxt

(
(φx + v̄x)2 + C0v̄2

x + v̄tt

)∣∣∣∣
x=0

dτ

=
∫ t

0
(1 + τ)2

(
O (1)

(
φ3

x

3

)
t

+ O (1)
(
φ2

x

)
t
v̄x + (O (1) + C0) φxtv̄

2
x + φxtv̄tt

)∣∣∣∣
x=0

dτ

= − (1 + t)2
φx

(
O (1) φ2

x

3
+ O (1) φxv̄x + (O (1) + C0) v̄2

x + v̄tt

)∣∣∣∣
x=0

+
∫ t

0
(1 + τ)2

φx (O (1) φxv̄xt + 2 (O (1) + C0) v̄xv̄xt + v̄ttt)
∣∣∣∣
x=0

dτ

+ 2
∫ t

0
(1 + τ) φx

(
O (1) φ2

x + O (1) φxv̄x + (O (1) + C0) v̄2
x + v̄tt

)∣∣∣∣
x=0

dτ

⩽C (ε + δ) (1 + t) ∥φx (t)∥ ∥φxx (t)∥ + C (ε + δ)
∫ t

0
∥φx (τ)∥ ∥φxx (τ)∥ dτ

⩽C (ε + δ) (1 + t) ∥φxx (t)∥2 + C (ε + δ)
∫ t

0
∥φx (τ)∥2

1 dτ + Cδ2.

(2.43)

on the other hand,by using Cauchy-Schwarz inequality, we have

∫ t

0

∫
R+

(1 + τ)2
Fxφxtdxdτ

⩽Cδ

∫ t

0

∫
R+

(1 + τ) |φxφxt| dxdτ + C (ε + δ)
∫ t

0

∫
R+

(1 + τ)
3
2 |φxxφxt| dxdτ

⩽C (ε + δ)
∫ t

0

∫
R+

(1 + τ)2
φ2

xtdxdτ + Cδ

∫ t

0

∫
R+

(1 + τ) φ2
xxdxdτ + Cδ2

⩽C (ε + δ)
∫ t

0

∫
R+

(1 + τ)2
φ2

xtdxdτ + Cδ2.

(2.44)

substituting (2.43) and (2.44) into (2.42), Combining (??)and choosing suitable small ε and δ, then we
finish the proof.
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3 Proof of Theorem 1.1

According to Lemma 2.1 ∼ Lemma 2.4, we obtain the uniformity priori estimate provided that

∥(v0 − v̄)(x)∥H2(R+) + ∥v1(x)∥H1(R+) + δ ≤ δ̄

is met. Further, the existence of global solution been guaranteed by applying the local existence theorem
and a prior estimation by using continuity argument. Moreover, we obtain the decay rate

2∑
k=0

(1 + t)
k
2
∥∥∂k

xφ (·, t)
∥∥ ⩽ Cδ2, (3.1)

by applying Gargliado-Nirenberg inequality, we have

∥φ (·, t)∥L∞ ⩽ C∥φ (·, t)∥
1
2 ∥φxx (·, t)∥

1
2 ⩽ Cδ(1 + t)− 1

4 . (3.2)

Thus, Theorem 1.1 is proved.
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