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Abstract In this paper ,we study Schrödinger equation with Hartman potential, and discussed
the fundamental concepts of supersymmetric quantum mechanics (SUSYQM) , and factorization
method in radial and angular part separately . The energy eigenvalues and (radial) eigenfunctions
of the Hartmann potential are subsequently rederived using the techniques of SUSYQM
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1 Introduction

In 1972, an exactly solvable ring-shaped potential was introduced by H. Hartmann [3], The Hartmann
potential is given by the following expression

v(r, θ) = χσ2
(

2a0

r
− qχ a2

0
r2 sin2 θ

)
ε0 ≡

γ

r
+ η

r2 sin2 θ
(1)

where a0 = h̄2

me2 represents the Bohr radius and ε0 = −me4

2h̄2 is ground state energy of hydrogen atom, and
χ, σ, q are three dimensionless parameters.The introduction of the parameter q makes it possible to obtain
the Coulomb-like potential by taking q = 0 and χσ2 = Z in equation(1),[4,8]. This ring-shaped potential
was introduced to describe ring-shaped molecules like cyclic polyenes and benzene. Many papers have
been devoted to this potential since1972[1,2,5,8].In this article, the authors presents another alternative
method of solution in spherical coordinates using supersymmetry and factorizing method.

2 Seperating Variables of the Schrödinger Equation

Now we are going to consider the corresponding potential in spherical coordinates. In order to separate
the radial and angular part we consider the following expression,

Ψ(r, θ, φ) = R(r)H(θ)Φ(ϕ) (2)

Substituting this equation to the general form of corresponding Schrödinger, we have radial and angular
part of equations as following,

∂

∂r
(r2 ∂

∂r
)R(r) + 2µ

h̄2

[
Er2 − γr − h̄2

2µn(n+ 1)
]
R(r) = 0 (3)

and [
1

sin θ
∂

∂θ
(sin θ ∂

∂θ
)− m′2

sin2 θ
− 2µη

h̄2
1

sin2 θ
+ n(n+ 1)

]
H(θ) = 0 (4)

∂2Φ

∂ϕ2 +m′2Φ(ϕ) = 0 (5)
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The solutions in (5) is periodic and must satisfy the period boundary condition

Φ(2π + ϕ) = Φ(ϕ)

from which we obtain:
Φm′(ϕ) = 1√

2π
exp(±im′ϕ), m′ = 1, 2, ..., k (6)

Next step, we will try to solve equations (3) and (4) in the following sections.

3 The Solutions of the Radial Part with Factorization Method

In order to solve the radial part of equation (3) we consider the following variables,[17,18]

R(r) = u(r)L(r) (7)

therefore,

rL′′(r) +
(

2u
′

u
r + 2

)
L′(r) +

[
2u
′′

u
r + 2u

′

u
+ 2µ
h̄2Er −

2µ
h̄2 γ −

n(n+ 1)
r

]
L(r) = 0 (8)

and compare the following associated Laguerre equation [14-16],

rL′′n,m(r) + (1 + α− βr)L′n,m(r) +
[(
n− m

2

)
β − m

2

(
α+ m

2

) 1
r

]
Ln,m(r) = 0 (9)

the energy spectrum and radial part of wave function are respectively

En,m = 2µ
h̄2

γ2

(m2 − n− α) (10)

and
R(r) = r

(α−1)
2 e−

βr
2 Lα,βn,m(r). (11)

In here we note that the solution associated Laguerre in the Rodrigues representation are,

Lα,βn,m(r) = an,m(α, β)
rα+m

2 e−βr

(
d

dr

)n−m
(rn+αe−βr), (12)

where an,m(α, β) is the normalization coefficient, and also obtained by,

an,m(α, β) = (−1)m
√

βα+m+1

Γ (n−m+ 1)Γ (n+ α+ 1) . (13)

Now we are going to the factorize the second order equation from radial part [14-16]. In that case the
first order rasing and lowering operators A+ and A− with respect to m are ,

A+(m; r) =
√
r
d

dr
− m− 1

2
√
r

A−(m; r) = −
√
r
d

dr
− 2α+m− 2βr

2
√
r

(14)

and with respect to n and m are,

A+(n,m; r) = r
d

dr
− βr + 1

2(2n+ 2α−m)

A−(n,m; r) = −r d
dr

+ 1
2(2n−m)

(15)
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4 The Solutions of the Angular Part of Equation

In order to apply factorization method, we introduce a new variable x = cosθ, so the angular part of
equation is,

(
1− x2)H ′′(x)− 2xH ′(x) +

[
n(n+ 1)−

(m′2 + 2µ
h̄2 η)

1− x2

]
H(x) = 0 (16)

We assume the H(x) as follows,
H(x) = f(x)p(x) (17)

and compare with the following Jacobi equation [13,14],

(1− x2)P ′′(α,β)
n,m (x)− [α− β + (α+ β + 2)x]P ′(α,β)

n,m (x) (18)

+
[
n(α+ β + n+ 1)− m(α+ β +m+ (α− β)x)

1− x2

]
p(α,β)
n,m (x) = 0,

one can obtain the angular part of wave function,

H(x) =
(

1 + x

1− x

)( β−α4 )
(1− x2)

(α+β)
4 p(α,β)

n,m (x), (19)

and some following results,

(α+ β) = −2m. (20)

In that case the first order operators corresponding to the angular part of equation with respect to m are,

A+(m;x) =
√

1− x2 d

dx
+ m− 1√

1− x2
x

A−(m;x) = −
√

1− x2 d

dx
+ (α− β) + (α+ β +m)x√

1− x2

(21)

with respect to n and m are,

A(n,m;x) =
√

(1− x2) d
dx

+ (n−m)x− (β − α)
2

A+(n,m;x) = −
√

(1− x2) d
dx

+ (n+m+ 1)x− (β − α)
2

(22)

5 The Supersymmetry Approaches for the Hartmman Potential

In order to discuss the supersymmetry for this model[9-13], we have to consider the ground state wave
function. By using the Hamiltonian process and ground state wave function, we can obtain the V1(r) as
following.

V1(r) = h̄2

2m
d2Ψ ′′0 (r)
Ψ0(r) (23)

Solutions of the radial wave equation can be rewritten as

H1Ψ0(r) = − h̄2

2m
d2Ψ0

dr2 + V1(r)Ψ0(r) = 0, (24)
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Now, we factorize the corresponding Hamiltonian in terms of first order equation , which are called A
, A+

H1 = A+A (25)

The information from Laguerre equation these first order operators are given by the (rolling) equation .

A(n,m; r) = −r d
dr

+ 1
2(2n−m),

A+(n,m; r) = r
d

dr
− βr + 1

2K

(26)

where
K = (2n+ α−m). (27)

This leads us to the following potential,

V1(r) = W 2(r)− h̄√
2mW ′(r) (28)

This equation is known as Riccit equation ,where W (r) is supper potential and we obtain ,

W (r) = −βr + 1
2K (29)

Finally we have ,
V1(r) = β2r2 − βKr + 1

4K
2 + h̄√

2mβ (30)

Now , we are going to obtain the Hamiltonian H2 , As H2 = AA+which is partner of H1,

H2 = − h̄2

2m
d2

dr2 + V2(r), (31)

V2(r) = W 2(r) + h̄√
2mW ′(r)

Also the corresponding potential V2 can be obtained by the following expression ,

V2(r) = β2r2 − βKr + 1
4K

2 − h̄√
2mβ (32)

where H2 is ,

H2 = −r2 d
2

dr2 −
[
1− 1

2(2n−m)
]
r
d

dr
+
[
1− 1

2(2n−m)
]
βr + 1

4K(2n−m) (33)

The potential V1 and V2 are supersymmetry partner to each other. On the other hand , we have the
matrix supersymmetry for the Hamiltonian H1 and H2 ,

H =
[
H1 0
0 H2

]
(34)

We note here the H1 and H2can make closed algebra and they relate to Bosonic and fermionic operators ,

Q =
[

0 0
A 0

]
=
[

0 0
−r ddr + 1

2 (2n−m) 0

]
(35)

and
Q+ =

[
0 A+

0 0

]
=
[

0 r ddr − βr + 1
2K

0 0

]
(36)
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Here, we have the following commutation relation ,[
H,Q

]
=
[
H,Q+ ] = 0 (37)

{Q,Q+ } = H, {Q,Q} = {Q+, Q+ } = 0
and [

H,Q
]

=
[

0 0
H2A−AH1 0

]
(38)

In order to satisfy the equations (37)and (38), and

H2A = AH1 (39)

we have β as follows,
β = 2n+ 2α− 2D −m+ 7

2r (40)

This value of β guarantees the equation(37),
[
H,Q

]
= 0

Also from equation(37)
[
H,Q+ ] = 0

[
H,Q+ ] =

[
0 H1A

+ −A+H2
0 0

]
= 0 (41)

⇒ H1A
+ = A+H2

By comparing the left and right hand side of above equation we have two conditions, 2n−m = 4 and
2n−m = 0, we have,

[H,Q+ ] = 0
This completely satisfies the anti-commutation relations , {Q,Q+ } = H, {Q,Q} = {Q+, Q+ } = 0

{Q+, Q+ } = 0⇒
(

0 A+

0 0

)(
0 A+

0 0

)
+
(

0 A+

0 0

)(
0 A+

0 0

)
= 0 (42)

{Q,Q} = 0⇒
(

0 0
A 0

)(
0 0
A 0

)
+
(

0 0
A 0

)(
0 0
A 0

)
= 0

and
{Q,Q+ } = H ⇒

(
0 0
A 0

)(
0 A+

0 0

)
+
(

0 A+

0 0

)(
0 0
A 0

)
= (43)(

A+A 0
0 AA+

)
=
(
H1 0
0 H2

)
= H

We note here the super charges commutative together with this happen for degeneracy. Now we are going
to continue this process for angular section with aspect of case where the first order operators will be as,

A+(n,m; r) = −(1− r2) d
dr

+ (n+m+ 1)r + (β − α)
2 (44)

A(n,m; r) = (1− r2) d
dr

+ (n−m)r − (β − α)
2

We take advantage form change of variable x = cos θ the first order operators in terms of θwill be as, The
corresponding Hamiltonian for H1 is ,

H1 = − d2

dθ2 + n sin θ + (γ cos θ + ρ) d
dθ

+ nγ cos2 θ +m(α− β) cos θ +−ερ (45)

the super potential for ground state wave function W (r) = −γ cos θ − ρ and the potential V1 will be
obtained by the following expression ,

V1(θ) = (−γ cos θ − ρ)2 + h̄√
2mγ sin θ = (γ cos θ)2 + ρ2 + 2γρ cos θ − h̄√

2mγ sin θ (46)
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Next step we want to make the partner Hamiltonian H2 = AA+, the Hamiltonian corresponds to V2
potential,so we have ,

H2 = − h̄2

2m
d2

dr2 + V2(r), (47)

V2(r) = W 2(r) + h̄√
2mW ′(r)

The final result for the V2(r) and corresponding Hamiltonian are respectively ,

V2(θ) = (γ cos θ)2 + ρ2 + 2γρ cos θ + h̄√
2mγ sin θ (48)

and
H2 = − d2

dθ2 − γ sin θ + (ε− n cos θ) d
dθ

+ nγ cos2 θ + (nρ− εγ) cos θ − ερ (49)

Where V1(θ) and V2(θ) are partner to each other , the matrix form for Hamiltonian is ,

H =
(
H1 0
0 H2

)
(50)

This Hamiltonian makes closed algebra where super charges Qand Q+ are respectively ,

Q =
(

0 0
A 0

)
=
(

0 0
− d
dθ − n cos θ + ε 0

)
(51)

and
Q+ =

(
0 A+

0 0

)
=
(

0 d
dθ − γ cos θ − ρ

0 0

)
(52)

This also closed form of SL(1,1) algebra , so we have

[H,Q ] = [H,Q+ ] = 0 (53)

{Q,Q+ } = H, {Q,Q} = {Q+, Q+ } = 0

and
[H,Q ] =

[
0 0

H2A−AH1 0

]
(54)

From equation (53) we have obtained the following condition ,

H2A = AH1 (55)

In that case if the relation [H,Q ] wants to be satisfied we will have ,

γ cos θ = −ρ (56)

Again we consider the following relation , and

[H,Q+ ] =
[

0 H1A
+ −A+H2

0 0

]
= 0⇒ H1A

+ = A+H2 (57)

Also with comparing the left and right hand side of above equation ,we obtain,

(ρ+ ε)γ sin θ = 0
α− β = 0

(58)

if we apply the 2n−m = 0, we have,
[H,Q+ ] = 0
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This completely satisfies the following anti-commutation relations , {Q,Q+ } = H, {Q,Q} = {Q+, Q+ } =
0

{Q+, Q+ } = 0⇒
(

0 A+

0 0

)(
0 A+

0 0

)
+
(

0 A+

0 0

)(
0 A+

0 0

)
= 0 (59)

{Q,Q} = 0⇒
(

0 0
A 0

)(
0 0
A 0

)
+
(

0 0
A 0

)(
0 0
A 0

)
= 0

and
{Q,Q+ } = H ⇒

(
0 0
A 0

)(
0 A+

0 0

)
+
(

0 A+

0 0

)(
0 0
A 0

)
= (60)(

A+A 0
0 AA+

)
=
(
H1 0
0 H2

)
= H

6 Conclusion

In this paper we introduced the generalized Kratzer potential and wrote the corresponding Schrödinger
equation. We connected this equation with Lagure and Jacobi equations and obtained the energy spectrum
and wavefunction. Also we factorized the corresponding equation in terms of first order equations. We
used these first order equations and discussed the generators algebra. Finally the partner for the Kratzer
potential for angular and radial part is obtained by the supersymmetry approches. It may be interesting to
continue this research with applying Durbox transformation, in that case one can obtain the corresponding
modified potential. We take this potential and obtain the super potential and generators of supersymmetry.
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